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Abstract 

Probability of close approach is the probability that two satellites will 

be within some specified distance threshold of each other at a random time 

within a specified time interval. In this paper, methods were developed to 

calculate probability of close approach between two satellites. To simplify 

the analysis, the investigation was restricted to satellite orbits and time 

intervals where the mean anomaly of both satellites can be treated as 

independent, uniformly distributed random variables. In addition, all orbital 

parameters, except for mean anomaly, were assumed to be constant over 

time. This means that all the methods developed in this paper to calculate 

the probability of close approach will only be valid over very long time 

intervals where the ratio of the orbital periods of the two satellites can be 

approximated as an irrational number. Likewise, there can be no 

perturbations in the orbital parameters of both satellites. 

The first method developed was a general method for calculating the 

probability of close approach between two satellites in elliptical orbits. The 

method requires numerical integration and direct solution of the roots of a 

4th order polynomial during each numerical integration step. 

Another method was developed for calculating the probability of close 

approach between two satellites in circular orbits. This method still requires 

numerical integration to obtain a solution, but in this case a direct solution 

was found for the limits of integration. Futhermore. the calculations 

required during each numerical integration step are much simpler than those 

required to calculate the probability of close approach with elliptical orbits. 

vii 
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Finally, a direct solution for approximate probability of close approach 

between two satellites in circular orbits was developed for the case where the 

angle between the orbital planes of both satellites is not small and the 

probability of close approach is small. 

Both the elliptical orbit and the circular orbit methods of computing 

probability of close approach yielded results that compare favorably with 

estimates of probability of close approach derived from statistical simulations. 
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I.   Introduction 

|§ There  are  t  variety  of problems  where  the  close  approach  of two 

i* satellites is of interest.    Here, close approach of two satellites is defined as 

ocurring whenever the distance between two satellites is less than or equal to 

* some   distance  threshold   dra.      When   the   position   and  velocity  of both 

™ satellites are well known the actual time and duration of each close approach 

can be predicted.    However, if the time of interest cannot be predicted, then 

j» a deterministic approach to the close approach of two satellites can no longer 

be used. 

■* The   purpose  of  this   paper  is  to   develop   methods  to  calculate  the 

i/i probability    of   close    approach    between    two   satellites    at    a    uniformly 

distributed random time within a specified time interval.     To simplify the 

■ analysis, the investigation is restricted to satellite orbits and time intervals 

•g where the mean  anomaly of both satellites can be treated as independent, 

uniformly   distributed   random   variables.       In   addition,   all   other   orbital 

U parameters   are   assumed   to   be   constant   over   time.      Because   of  these 

v restrictions, the methods developed to calculate probability of dee approach 

are only valid over very long time intervals with some restrictions to the 

ratio of the orbital periods of the two satellites (see the Theory section of 

chapter III). 

In general, the goal is to come up with a way to calculate the 

probability of close approach between two satellites in elliptical orbits. This 

general   method   can   also   be   used   to   calculate   the   prohabilit)   of  clo*c 

■ approach between two satellites in circular orbits, but it is computationally 

& 
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cheaper to use a method designed specifically to calculate th* probability of 

close approach between two satellites in circular orbits. Similarly, there are 

some special cases where an approximate method for calculating the 

probability of close approach gives adequate accuracy at much less 

computational expense. For these reasons, three different methods will be 

developed to calculate probability of close approach. The first method is a 

general method for calculating the probability of close approach between two 

satellites in elliptical orbits (see chapter III). The second method is for 

calculating the probability of close approach between two satellites in circular 

orbits (see chapter IV). The last method is for calculating the approximate 

probability of close approach between two satellites in circular orbits where 

the probability of close approach is small and the angle between the orbital 

planes of the two satellites is not small (see chapter IV). 

Finally, to verify that the three methods are correct, the probability of 

close approach will be computed (using the three methods, where applicable) 

for a variety of orbital test cases, and the results will be compared to values 

derived from statistical simulations. 

9 
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II.    Background 

Mi^h work has been done in investigating the probability of collision 

between orbiting bodies (3, 6, and 8). Probability of collision is typically 

defined as the probability that one orbiting body /satellite will come within 

some distance threshold of another satellite one or more times within a 

specified time interval. When dealing with probability of satellite collision, 

the distance threshold used is typically very small, since it is directly related 

to the physical size of the satellites involved. 

More recently, work has been done in investigating the probability of 

satellite intercept between satellites in circular orbits (9). Here, a satellite 

intercept is defined as occurring when two satellites are within some distance 

threshold of each other for at least some specified length of time. 

Probability of satellite intercept is the probability that one or more satellite 

intercepts will occur within some specified time interval that begins at some 

uniformly distributed random time within another much larger time interval. 

Probability of collision and probability of intercept are two examples of 

probabilistic measures dealing with satellite proximity. This paper introduces 

a new probabilistic measure of satellite proximity, called probability of close 

approach. Probability of close approach is the expected fraction of a 

specified time interval over which the distance between the two satellites is 

less than or equal to some distance threshold. For very long time intervals, 

the probability of close approach equals the sum of the durations of ail the 

close approaches that occur within the specified time interval divided by the 

length of the specified time interval. 

Probability   of   close   approach   is   very   different   from   probability   of 

:±JV«_ _^\^. •-*._*_..•__ v_5^ .:^ _.TJTT_'    •+   -^ .-   JU _t_-»_•> _j._•*._J 
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collision. When the probability of one or more collisions between two 

satellites   within   a  very  long time  interval  approaches   1.0,  the  computed 

<n* probability of close approach can approach zero.    The reason for this is that, 

regardless  of the  number of collisions,  the  actual time that two satellites 

I spend within the collision distance threshold can be a very small fraction of 

the length of the time interval of interest. 

Ü Probability  of  close   approach   is  closer  in   concept  to  probability  of 

m intercept, but there are still major differences.    Probability of close approach 

places   no   requirement   on   the   duration   of the  close   approach,   and  close 

/ approaches that occur after the uniformly distributed random time are of no 

interest.    Despite these differences, probability of intercept and probability of 

8 close approach share three major assumptions.    First, the time of interest is 

assumed to be a uniformally distributed random time within some very long 

time interval. Second, the mean anomalies of both satellites are assumed to 

be independent, uniformly distributed random variables (probability of 

intercept was derived only for circular orbits, where mean anomaly always 

equals true anomaly). Finally, all other orbital parameters are assumed to 

be constant over time. 

Probability of close approach is different from probability of intercept, 

just as their purposes are different. When it is important that one or more 

intercepts occur between two satellites, all within a specified time interval 

starting at some  random  time,  a  high  probability of intercept is desirable. 

? When it is important that one satellite spend as much of its orbital lifetime 

as possible within some arbitrary distance threshold of another satellite, then 

m a high probability uf close approach is desirable. 

i 
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III.   Probability of Close Approach Between 
Satellites in Elliptical Orbits 

The purpose of this chapter is to develop a method for calculating the 

probability of close approach between two satellites in elliptical orbits. 

Theory 

The derivation of probability of close approach can be broken up into 

three major parts. This section identifies these major parts and describes 

how they can be put together to calculate probability of close approach. 

The next three sections of chapter III then completes the solution for each 

of the three parts. 

By definition, probability of close approach is the probability that the 

distance between two satellites will be less than some distance threshold at a 

uniformly distributed random time within a specified time interval. To 

simplify the analysis« two basic assumptions were made. First, all orbital 

elements, except for mean anomaly, are assumed to be constant over time. 

Second, the mean anomalies of both satellites are assumed to be independent 

random variables that are uniformly distributed between 0 and 2rr. The 

first assumption is valid when there are no perturbations to the orbital 

elements of the two satellites. When is the second assumption valid? At a 

uniformly distributed time within a specified time interval, the mean anomaly 

of both satellites can be represented by (1:33, 1S5) 

M, - ( 2r. t/Tl x Mte ) MOD 2* (1) 

Ut = ( 2rr t/P, -I- Mte ) MOD 2rr (2) 

i 
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where 

t = time from start of time interval of interest. 

Mj = mean anomaly of satellite 1. 

Mlo = mean anomaly of satellite 1 at t = 0. 

Mj = mean anomaly of satellite 2. 

Mfo = mean anomaly of satellite 2 at t = 0. 

Pj = orbital period of satellite 1. 

Pj = orbital period of satellite 2. 

and the general function X MOD Y represents the remainder of X divided 

by Y. For purposes of this analysis, t is a random variable uniformly 

distributed between 0 and the duration of the time interval of interest. 

Since mean anomaly is a linear function of t (see Eqs (1) and (2)), Mj and 

M, are also uniformly distributed random variables when the duration of the 

time interval is less than the orbital period of both satellites, or when the 

duration of the time interval is equal to some integer multiple of the period 

of both satellites.     Furthermore, over very long time intervals  (over  100 

wj orbital periods) Ml and M, approximate (within 1%) random variables that 

are  uniformly  distributed   between  0  and  2n.     Therefore,  over long time 

vs intervals the mean anomalies of both satellites can be treated as uniformly 

H distributed random variables (not necessarily independent). 

When  can   M,  and   M2  be considered  independent?     Let to be some 

arbitrary time within the time interval of interest, and let n be some 

nonnegative integer.    Using Eqs (1) and (2), at    t « to + nP(    the mean 

anomalies of both satellites can be represented by the following: 

6 
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M, = Mlt (3) 

M, = [ 2ft (Pj/Pjjn 4- Mw ] MOD 2ft (4) 

where 

Mu = the mean anomaly of satellite 1 at t = to. 
Of MM = the mean anomaly of satellite 2 at t = tQ. 

Similarly, at    t = t   -f nP2    the mean anomalies of both satellites can be 

™ represented by 

« Mj = [ 2ft (Pj/P^n + Mlt ] MOD 2ft (5) 

1 M2 = M*t (6) 

| Mj and M} can be considered independent so long as the results of Eqs (4) 

& and (5) are uniformly distributed between 0 and 2ft.    Once again, let n be 

some nonnegative integer. Also let nmax be the maximum number of orbital 

periods within the time interval of interest.    There are two cases in which 

Jg Mj and Ma can  be considered independent.    The first case is where Pj/P3 

and P}/P| are irrational, and for n between 0 and nmax, the distances from 

(Pj/P2)n and (Pj/Pj)n to the nearest integer are not less than one divided 

J2 by   nmax.      For   practical   purposes,   the   ratios   P,/P,   and   P,/P,   can   be 

*> considered irrational when (Pj/Pjjn and (Pj/Pjjn do not equal integers for n 

between   0   and   nmax.      The  second  case  is  where   (Pt/Pj)n   and   (Pj/Pa)n 

ti equal integers for some value of n less than nmax, where n is large (lÖÜU-r). 
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and either nmax MOD n is large (1000+), or the distance from nmax 

divided by n to the nearest integer is small. For members of the second 

case where nmax MOD n is large, the orbital ratios must also meet the 

criteria of the first case for n between 0 and nmax MOD n. 

Generally  speaking,  if Pj/P,  and  P,/Pj  •'-*  irrational,  and  the time 

interval of interest is very long (1000+ orbital periods), then the mean 

anomalies of both satellites can be considered independent, uniformly 

distributed random variables. 

As discussed above, the mean anomalies of both satellites are assumed 

to be independent random variables that are uniformly distributed between 

of 0 to 2n. This means that the probability density functions of the mean 

anomalies of the two satellites can be represented by (5:72-73) 

mx) = jjf      for 0 £ Mj < 2rr (7) 

/(Mj) = jL      for 0 £ M8 < 2TT (8) 

S where I 
Mt = the mean anomaly of satellite 1. 

M3 = the mean anomaly of satellite 2. 

Likewise,   the joint   probability   density  function  of the  mean   anomalies  of 

both satellites can be represented by (5:136, 139-140) 

/(M..MJ - -I, for   0 £ M. < 2ir (9) 
1        • 4 TT" * 

0$M,< 2rr 

8 
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The    probability   of   close   approach   (PCA)   can   be   computed   by 

integrating the joint density function over the region of M{ and M, where 

the distance between the satellites (d) is less than or equal to some distance 

threshold  dra.     Eq  (10)  is the formula for probability of close  approach 

between the two satellites: 

R,  R, 
p« -1 iT1 (10) 

where R, is the region of M, over which a close approach occurs, given Uv 

** and Rj is the region of M{ over which some close approach with satellite 2 

91 is possible. 

To  simplify  analysis,  four functions  will  be  defined.     At this  point, 

» these  functions  are  strictly  symbolic,  and  no solution  for these  functions 

■ exist.     The  four  functions   art   M,^),   Ms(t/,),   d(M,,Mt),   and   AM,(Mt). 

MJ(I/J) is the mean anomaly of satellite 1 as a function of the true anomaly 

s of satellite 1. Similarly, Mt(i/t) is the mean anomaly of satellite 2 as a 

B function   of   the   true   anomaly   of   satellite   2.       The   function   d(M)tM,) 

% represents the distance between the two satellites as a function of their mean 

anomalies.    The last function is AM,(M,), which b defined as 

| mt(Ux) = j  dM, (11) 

maKftwraiftft».Mewi»**-j^n*■V.JU«U«J*K> *>->-» y^>y_»rm »^«> teLzxzM&xsxmx&zma.v> > .>wn ^% i> > 
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Substituting Eq (11) into Eq (10) results in 

P0A  = 

=  f AM,(M,) PC4 =  |  AM,(M,) ^L (12) 
J 4TT* 

g| Given M,, the distance between the two satellites is purely a function of M2 

m (all other orbital elements are assumed constant).    Each M, solution to the 

equation     d(MrM8)  =  d^     will be referred to as a mean anomaly close 

HS approach   boundary.     The  reason  for this  is that they  delimit the  mean 

anomaly regions of close approach between both satellites.    For each two M4 

solutions to    d(Mj,M2)  =  dm ,    there is a mean anomaly close approach 

region such that 

d(MJfMt) £ d^      for   MJ/U S M, £ U 

Mi/n s MlfU 

where MJ/n is used to represent the beginning of the itk close approach 

region,  and  M)/t} is  used  to represent the end of the ith close approach 

region. If there is more than one close approach region, then the regions are 

numbered so that the mean anomaly of the beginning of the i+1 close 

approach region is greater than or equal to the mean anomaly of the end of 

the  \th close  approach  region.     The possible range of each  mean  anomaly 

10 
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close approach boundary is from 0 to 2n, The exception to this is when a 

close approach region crosses 2tr.    In this case, Ms/n (the beginning of the 

first close approach region) can range from -27r to 0 so that the close 

approach region that crosses 2ir does not have to be broken into two parts. 

Given all this, when there are n close approach regions and n is greater 

than zero, the general solution for AM,(M,) is 

AM^M,) = t ( MJ/l2 - Um ) (12) 

where 

* -2TT £ NL„, £ 2n *j/n 

0 £ MJ/U £ 2n      for   i > 1 

0 £ M8/w £ 2n 

d(UvUt) * dra       for   Um £ M, £ MJ/tt 

*(Mpk^) = dTO 

^MpM1/tt) = d^ 

Mt/n * Mt/u 

**»/» - ^»/JI       *or   n > 1    and   j > i 

For example, when there are four Mt solutions to    d(M,,Mt)  =  d^ , the 

solution to AMjfMj) can be represented by (also see Figure 1) 

AMt(Mt) = Mfm - Mi;il 4 M„M - M„u (13) 

II 
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where 

-2rr £ Ma/U £ 2n OS M,/w £ 2rr 

0 £ M,;|1 £ 2rr 0 £ MJ/M £ 2rr 

d(MIfM|/n) = dra d(M„M,/lt) = dra 

d(MpMa/J1) = dra d(MlfMim) = dra 

dfM^M,) £ dra      for   M1/u £ M, £ M,/w 

dd^.M,) £ dra      for   Mt/J1 £ M, £ MJ/M 

When there are no M} solutions to d(MpMt) = dw , AM^Mj) can possess 

one of two possible values. If d(MltMt) > d^ for 0 £ M3 £ 2rr , then 

AMt(Mt) must equal lero. If d(M)tM,) £ dm for 0 £ M, £ 2rr , then 

AMjfMj) must equal 2tr. However, even when there are no M, solutions to 

d(MpMt) = Am , Eq (12) can still be used to calculate AM,(Mt) through 

the following procedure: 

If   d(UvUt) > dw   for 0 £ M, £ 2tr (14) 

n = 1 

M»,., = 0 

■BWBmww%int?ftwwfti<fw^<^ytf»h!<«.*P.^ ^•+*if&rj+jif^*;*L+.'*L'-*?v-:*rj*r*. /*/-**«."v-.--*«.? •*- 
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If   d(M1(M,) i dra   for 0 S M, £ 2w 

n = 1 

M|/ti - ° 

MJ/M = 2ir 

(15) 

I 

I 

I 

Distance Between 
Satellites 

i k 

!           dTH* r- ^a/it     Ma/n   Mi/«   MI/M 

V, 
-2rr 0 

Mean Anomaly of Satellite 2 

2rr 

Figure 1.   Description of Close Approach Boundaries 

With non-circular orbits, true anomaly is much easier to work with 

than mean anomaly. With this in mind, let d now be represented as a 

function of true anomaly instead of mean anomaly.   In other words, d(i/t,ft) 

now represents the distance between the two satellites as a function of the 

true anomalies of both satellites (f, and vt).    Given the true anomaly of 

6 
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satellite 1 (i/j), the distance between the two satellites is purely a function 

of the true anomaly of satellite 2 (v%). Each v% solution to the equation 

d(i/,,i/j) = dra will be referred to as true anomaly close approach boundary. 

For each two vl solutions to d(i/j,i/,) = dra , there is a true anomaly close 

approach region such that 

d(i/pi/,) £ dra       for   i/      S v% £ i/w 

^/u * "J/II 

where vtfn is used to represent the true anomaly of the beginning of the \th 

close approach region, and i/]/t3 represents the true anomaly of the end of 

the itk close approach region.    Mean anomaly close approach boundaries and 

true anomaly close approach boundaries are related in the following way: 

* M1/n = M,(*)/M) (16) 

| Um = M,(l/J/B) (17) 

where   M2(i/,)   is  the   mean   anomaly  of satellite  2  as  a  function  of true 

anomaly. 

Given vv AM, can now be expressed as a function of the true anomaly 

& of satellite  1.    When there are n close approach regions and n is greater 

*; than zero, the general solution for AMt(i/t) is (also see Eq (12)) 

AkW = £ [ Mt(i/t/1J) - Ut(vm) ] (18) 

14 
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where 

-2ir & vtfu £ 2n 

0 £ i/J/u i2ir      for   i > 1 

0^wi 2rr 

d(vvvt) i dra      for   vi/u SvtS vm 

a(i/„i/1/u) = dffi 

"w * "»/ji      for   n > »   ud   i > « 

When there «re no «/, solutions to i(vvvt) = dn , Bq (18) ctn still be 

used to compute AM,(t/|) through the following procedure (also see Eqs (14) 

and (15)): 

If   d(i/,,i/,) > &n   for 0 i i/, & 2n (19) 

n =? 1 

"«/» ' ° 
"vn - ° 

If   i{vvvt) i in   for 0 i t/, S 2« (20) 

"•/» - u 
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»tilt = 2* 

By changing the integration variable in Eq (12) from mean anomaly of 

satellite 1 to true anomaly of satellite I, the equation for probability of close 

approach becomes (4:212) 

Pc = J *",<"■> (SJ&!) ji, », I») 

where T} is the region of vx over which a close approach is possible. 

Using Eq  (21) to compute PCA requires integration over the region of 

t/t where some close approach with satellite 2 is possible.   Since AM|(t/)) can 

be discontinuous for some i/|f this requires that the limits of integration be 

found over which the function AMs(ft) is continuous before Eq (21) can be 

integrated analytically. Unfortunately, there is normally no closed form 

solution for the limits of integration. Therefore, to calculate probability of 

close approach, Eq (21) must be numerically integrated over the complete 2n 

range of vy 

The   final   equation   for   probability   of  close   approach   between   two 

satellites in elliptical orbits is 

p. - JV.» (3£>) ± *. 
-IT 
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where for each numerical integration step, AM3(i/j)  is computed using Eqs 

(18) - (20). 

Three more things are needed to complete the solution for probability 

of close approach: 

1. An equation for M%(v7) (see Eq (18)) 

2. A.i equation for dMl{vl)/Avl (see Eq (22)) 

3. Given vx and dTH, a method to determine the close approach 

boundaries (i/2/il and i/2/l2) (see Eq (18) - (20)) 

The solutions to these problems are the subject of the next three sections of 

chapter III. 

Mean Anomaly as a Function of True Anomaly 

The purpose of this section is to derive an equation for mean anomaly 

as a function of true anomaly. 

Eqs (23) and (24) are the well known equations relating true anomaly 

to eccentric anomaly (2:62), and mean anomaly to eccentric anomaly (1:85): 

tan(i//2) = [(l+e)/(l-e)]1'2 tan(E/2) 

M = E - e sinE 

(23) 

(24) 

where 

v 
e 
E 

true anomaly 
eccentricity 
eccentric anomaly 
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Substituting 

fi = [(l-eJ/U+e)]1" (25) 

into Eq (23), and then rewriting it as an equation for eccentric anomaly as 

a function of true anomaly, results in 

E = 2 tan"1^ tan(z//2)] (26) 

Substituting Eq (26) into Eq (24), yields an equation for mean anomaly as a 

function of true anomaly: 

M = 2 tan-l[tf tan(i//2)] - e sin{2 tan"1^ tan(i//2)]} (27) 

Substituting 

f = ß tan(i//2) (28) 

into Eq (27), results in an equation for mean anomaly as a function of i/: 

M = 2 tan"1^ - e sin[2 tan-sV) (29) 

By applying the  trigonometric  relationship   (7:190)     sin28 = 2 sin0 cosG , 

where   6 = tan*"1^ , Eq (29) becomes 

M = 2 tan-1^ - e [2 sin(tan'lV) cos(tan~1^)] (30) 

Substituting (7:193) 

sin(tan"1^) = ^/(l-^')1" (31) 
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cos(tan-1^) = l/(l+f*)1'* 

into Eq (30), results in 

M = 2 tan"1^ - 2e [^/(l+^3)l/J][l/(l+^)l/2] 

M = 2 [tan-1^ - c ^/(1-f^)] 

Substituting Eq (28) back into Eq (33), yields 

(32) 

(33) 

V 
V 
(it 

I 

M = 2 {tan-l[/S tan(i//2)] - e ß tan(i//2)/[l + 0* Un2(v/2)]}      (34) 

As a last step, multiply the right half of Eq (34) by cos'(i//2)/cos*(i//2) and 

simplify: 

M = 2 f tan-H/? Un(i//2)] -   r 
e g ^2> *°s(?/2L   1        (36> L [cos8(i>/2) - /?* sin'(i//2)]   J 

Eq (35) is the equation for mean anomaly as a function of true anomaly, 

which is one of the things needed to compute the probability of close 

approach. However, when using Eq (35) to compute mean anomaly in a 

computer program, the program should first check the value of v. If v 

equals tr, then the program should directly set mean anomaly to rt instead 

of trying to calculate mean anomaly using Eq (35), because tan(rr/2) is 

infinite. Likewise, if v equals -rr, then the program should directly set 

mean anomaly to -rr. When v is not equal to ±TT, then Eq (35) can safely 

be used to compute the mean anomaly. 
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Derivative of Mean Anomaly With Respect to True Anomaly 

M(v) represents mean anomaly as a function of true anomaly (see Eq 

v| (35)).     The purpose of this section is to solve for the derivative of M(i/) 

with respect to true anomaly. 

1 Differentiating Eq (33) yields 

| dM = 2 [ I/O*'*2) - e/(l+^) - 2 f/a+ÜV] ty (36) 

H By using    (l+^a)a    as a common denominator in all three terms above, Eq 

(36) can be simplified into 

| «I ■ , [ I*« - -*tf - «3 ] H 

i 

I Differentiating Eq (28), yields 

df = (ß/2) sec'(i//2) dv (38) 
s 
^ Substituting Eqs (28), and (38) into Eq (37), results in 

dM _ 2 [ '-« ± (1+e) ßl t>n'(i//2)" 
dM ~ '[      [\ + fi» Un'(i//2))> 

Substituting 

(l+e)0: = l~e 

20 
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into Eq (39), results in 

dM -2 [ VI' >Uv%)-" ] «"» "e'<"/21 d"      (,0) 

Using the trigonometric relationship 

l+tan2(t//2) = sec2(i//2) 

i 
:? 

1 

R 

a 

Eq (40) can be simplified to 

dM/di/ = 2 
[1 + /?* tan'^)]' (0/2) sec'(t//2) 

*w - Tfflk&fc (41) 

As a last step, multiply the right side of Eq (41) by   cos4(i//2)/cos4(f/2)    , 

and then simplify: 

dM/di/ = .    i,   inJ
l~eJß . (cos*(i//2) + /?' sin,(i//2)]' 

(42) 

This removes any potential numerical problems at v = ±7:. 

Eq   (42)   b   the   equation   for  the   derivative   of  mean   anomaly   with 

p     1r-i 

! I? 
21 
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respect  to  true   anomaly,   which  is  the  second  of three  things  needed  to 

■ compute the probability of close approach. 

W Finding Close Approach Boundaries Given 
the True Anomaly of Satellite 1 

A Given vv when there are 2n t/2 solutions to    d(l/l,i/J) = dTH    and n is 

-. positive,   there   are   n   true   anomaly   close   approach   regions.      The   close 

approach boundaries of the \th close approach region can be represented by 

| vm and vw where 

ffl ~2rr £ i/2/n £ 27T 

j: 0 £ i/f/|1 £2*       for   i > 1 

i 
V 

R 

5! 

>: 

0 £ i/2/l2 £ 2TT 

d(i/ri/a) £ dTH       for   t'2/u £ v% £ v 2/12 

5S d(*V«/l|)   =   dTH 

TH 

l/2/ll   S   I/2/»2 

^2/12   *   ^2/Jl f01P     n   >   l      and     J   >   l 

The close approach boundaries for each close approach region are required to 

j& calculate   AM2(i>2)   (see   Eq   (18)),   and   a   method   to   determine   the   close 

V approach boundaries of each close approach region is the last thing required 

to   complete   the   solution   for   probability   of   close   approach   between   two 
V 
H satellites  in  elliptical  orbits.     The   purpose  of this  section  is to  develop  a 
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method to calculate i/J/u and i/J/w for each close approach region given the 

true anomaly of satellite 1. 

When numerically integrating Eq  (22), only vl and v7 are known at 

the beginning of each numerical integration step. To compute the distance 

between satellite 1 and 2, the position vectors of both satellites must be 

determined within a common cartesian coordinate frame. For convenience, 

the perifocal frame of satellite 2 was selected. 

The position vector of satellite 2 in  the  perifocal frame of satellite 2 

can be represented by (1:72) 

4/>a = { x,   y,   z, } (43) 

i 
i 
i 

where 

$ 
* 

i 

and 

x, = r, cos(t/,) 

y, = r, sin (i/,) 

z, = 0 

r, = P, / (1+6,008(1/,)] 

(44) 

(45) 

(46) 

(47) 

Cj = eccentricity of satellite 2 

p2 -- semi-latus rectum of satellite 2 

i/j = true anomaly of satellite 2 

r} = the magnitude of r3/ 2 

Likewise, the position vector of satellite 1 in the perifocal frame of satellite 1 

can be represented by (1:72) 
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I 
where 

lW»i 
= { x,   y,   z, } (48) 

I 

i 

1 
*i} 

8 

i 

xl = rl cosfi/j) 

V| = rl sin(i/j) 

z. 
= 0 

r, = Pi / [1+€,«»(!/,)] 

and 

ei = 

Pi = 
vx = 
r. = 

eccentricity of satellite 1 
semi-latus rectum of satellite 1 

true anomaly of satellite 1 
the magnitude of r^. 

(49) 

(50) 

(51) 

(52) 

Transforming the coordinate frame of rl from the perifocal frame of satellite 

1 to the perifocal frame of satellite 2 can be performed in two steps.    The 

first step  is to transform r,  from  the perifocal frame of satellite  1  to the 

earth centered inertial reference frame.   The last step is to transform rt from 

the inertial frame to the perifocal frame to the perifocal frame of satellite 2. 

The transformation from the perifocal frame to the inertial frame can 

be done by multiplying the position vector in the perifocal frame by the 

following transformation matrix (1:82-83): 

R(wO) = 

R„ R» < 

K K» 5» K *n *■_! 

(53) 
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I where 

i 

Ru = cos Q cos Q - sin Q sin u cos i 

Rl3 = -cos 0 cos Q -sin Q sin o cos i 

Rxt = sin 0 sin i 

R31 = sin Q cos Q -f cos 0 sin Q cos i 

RJJ = -sin fi sin CJ + cos 0 cos Q COS i 

RJS = -cos Q sin i 

R|l - sin Q sin i 

RJ2 = cos a) sin i 

RJJ as cos i 

(54) 

(56) 

(56) 

(57) 

(58) 

(59) 

(60) 

(61) 

(62) 

I 

1 

and 

i = orbital inclinition 
Q = argument of perigee 
0 as longitude of the ascending node 

Regardless of the  perifocal  plane that the  position  vector of satellite   1   is 

transformed into, the position  vector of satellite  1   in the inertial frame is 

unchanged.    This means that 

(63) 

(64) 

(66) 
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i 

i 

Jp 

i 
>; 

i 

ij = inclination of satellite 1 
i5 = inclination of satellite 2 

QX = argument of perigee of satellite 1 
CJ, = argument of perigee of satellite 2 

Ql = longitude of the ascending node of satellite 1 
Q} = longitude of the ascending node of satellite 2 

£1/( = the position vector of satellite 1 in the inertial frame 

-i/ii ~ *ne P0^011 vecto; of satellite 1 in the perifocal plane of 
satellite 1 

ri/»2 = the position vector of satellite 1 in the perifocal plane of 
satellite 2 

ROpOjjQj) = the transformation matrix to transform from the perifocal 
frame of satellite 1 to the inertial frame 

Rfi^cjjjQj) = the transformation matrix to transform from the perifocal 
frame of satellite 2 to the inertial frame 

Multiplying both sides of Eq (65) by ß~!(i,,£j},Q}) results in an equation for 

J* the position vector of satellite 1 in the perifocal frame of satellite 2: 

The transformation matrix R is orthogonal (1:79-83), so 

RT(irurO,) = R-%&t$t) (67) 

Substituting Eq (67) into Eq (66), yields the final equation for ri; r* 
* 

iS rim = RT(«i«"rni) Wh*V°t> 1*1 (6*) 
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Eqs (43) through (62), and Bq (68) make it possible to compute the 

position vectors of both satellites within the perifocal frame of satellite 2. 

Given that 

-'./„ = <*, y. *, > <69) 

**.-<*. y« °> <70> 

the distance between satellite 1 and satellite 2 can be represented by 

d = ! (x2 - x,)' + (yf - yf + •» ]l" (71) 

Simplifying Eq (70) further, yields 

d = ( x^2x|Xl+xJ -r yj-2yly,+yj + t\ )* 

d = ( x|+yj+zj + xj+y| - 2xlX4 - 2yiy, )* (72) 

Substituting rj for xj+yj+zj and rj for xj+yj, Eq (72) becomes 

d = ( rj + rj - 2x|Xj - 2yiyj )»» (73) 

Substituting Eqs (44) - (47) into Eq (73) results in 

V d » H x Pi _   2xlP,cos(t/,)    __ frjyinfr,) j» 
1        fl+e.cosd/jl1'2        l+e?cos(iO 1+e, 

^P,sin(^t)  | 
fc2cos(i/2)   J 

After   squaring   both    sides,   subtracting   rj   from    both   sides,   and   then 
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multiplying both sides by ll+ejcosji/,))1, Eq (74) becomes 

(d'-r*)[l+eJcos(i/1)]' = p* - 2xJp,cos(t/J)[H-e}cos(t/,)] 
- 2y,p,sin(i/J)[l+eJcos(i/J)] (75) 

Simplifying Eq (75) further 

(d,-r»)[l+2e,cos(i/,)+e»cos*(i/,)] - p\ + 2xlp1cos(i/t)[l+e}cos(i/J)] 
= -2yIp,sin(i/,)[l+e1cos(i/J)]     (76) 

Now Eq (76) can be expressed as a polynomial of cos(i/,): 

A cos'(i/}) + B cos(i/,) + C = -2y|pJsin(i/,)(l+efcos(i/1)] (77) 

where 

A = e,[(d'-rp + 2x,P|] (78) 

B = 2[e,(d'-r») + x.pj (79) 

C = d»-rj-pj (60) 

Squaring both sides again, Eq (77) becomes 

AW(i/f) + 2ABcos,(i/J) + (2AC-fB,)cos,(i/|) + 2BCcos(i/t) + Cs 

= 4y}p]sin,(i/,)[l+2e1cos(i/J)4e5cos,(i/|)]   (SI) 

Using the trigonometric relationship    1-cosVj = sinVa in Eq (70) yicldr 

AW(t:) + 2ABcos*(i/:) + (2AC+B,)cosJ(t1) + 2BCcos(t'1) + C2 
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* 4y*p;[l-co5,(i/,)][l+2etcos(i/,)+eJcos,(i/t)] 

AW(i/,) + 2ABcos*(i/J) + (2AC-f B'Jcos^i/,) + 2BCcos(t/,) + C* 

= 4y|pJ[l-f2c1co5(i/1)4(e^l)coS*(i/,)~2cJcost(i/1)~e|co54(i/,)] (82) 

Now Eq (82) can be expressed as a single 4th order polynomial: 

P,cos4(i/,) -I- ?tcosM(ut) + PjCOftty,) 4 P4cos(i/,) + P, = 0 (83) 

where 

K = 4yjp| 

i 
i 
I 

P, = A1 + Ke{ 

P. = 

P. = 

2AB + 2Ke, 

2AC + B» + K(l-eJ) 

P. = 2CB - 2K«. 

P. = C - K 

(84) 

(86) 

(86) 

(87) 

(88) 

(89) 

:% 

V. 

The   roots   of   a   4th   order   polynomial   can   be   solved   for   directly 

(7:103-106).    This means that, given v|t Eq (83) can be used to solve for 

all possible values of cos(i/f) where the distance between the two satellites is 

equal to dyn. 

A  special case occurs  when  the  absolute value of yl approaches sero. 

When yt equals serof Eq (83) reduces to (see Eqs (77) to (80)) 
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A cos^i/,) + B cos(i/t) -I- C = 0 (90) 

where 

- A = e,[(d'-r}) + 2xlPJ (91) 

B = 2[e,(d'-r|) 4- xlPf] (92) 

« C - d*-rJ-P; (93) 

This also means that, when y, equals zero, Eq (S3) is equal to the square of 

H a 2nd order polynomial.    Theoretically, when yt equals zero, the roots of the 

p square  of Eq   (90)   are  the  same  as  two copies of the  roots of Eq  (90). 

However, in practical applications, this is not the case.    When using 1EEF 

m double precision arithmetic, the direct solution of the 4th order roots of the 

v„ square of Eq (90) can result in a pair of complex conjugate roots for each 

real  root  of Eq   (90),  where  the  real component of each  pair of complex 

I conjugate   roots   would  equal  one  of the   real  roots  of Eq   (90),   and  the 

imaginary component would be some small value on the order of 10"**. 

The addition of any imaginary number to an otherwise valid solution 

for   cos(ft),   makes   that   solution   unusable.      Because   of  this,   when   the 

absolute value of yl is small, two copies of the roots of Eq (90) should be 

used, instead of directly solving for the 4th order roots of Eq (S3). 

Under some conditions, it is possible that both  P( and P, in Eq (S3) 

Swill  equal  sero.     For  example,   when  satellite  2  is  in   a circular orbit  (et 

equab sero), both P§ and ?t in Eq (S3) are always equal to sero.    This case 

i 
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can be handled by checking the values of Pt and Pr before solving for the 

4th order roots of Eq (83).    If both ?t and P8 in Eq (83) are equal to zero, 

then the desired solutions are the roots of the remaining 2nd order equation. 

Another special case occurs when yl approaches zero and satellite 2 is in a 

circular orbit. Ignoring the fact that satellite 2 is in a circular orbit, since 

Vj is approximately zero, the desired solutions should be same as two copies 

of the roots of Eq (90). The difference is that the A coefficient of Eq (90) 

is equal to zero because the eccentricity of satellite 2 is equal to zero. This 

reduces Eq (90) to a 1st order polynomial (see Eq (94)) with one solution 

(see Eq (95)): 

B cos(i/2) + C = 0 (94) 

cos(i/2) = -C/B (95) 

However, similar to above, this can be handled by checking the value of A 

before solving for the roots of Eq (90). If A equals zero, then the desired 

solutions are the same as two copies of the single root of Eq (94) (see Eq 

(95)). 

The procedures above yield two or four values of cos(i/j) that arc the 

roots of Eq (83), or Eq (90) when the absolute value of yl is small (on the 

order of 10_lkm). After discarding solutions that are complex or have an 

absolute value greater than 1, there will be zero, two, or four valid solutions 

left. Ultimately, when there are two valid solutions, the close approach 

boundaries vmi and vJ/l2 must be found that meet the criteria described in 
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Eq (18) for n equal to one.    Simarily, when there are four valid solutions, 

the close approach boundaries i/J/u, v^iv ^2/21, and i/J/M must be found that 

U meet the criteria described in Eq (18) for n equal to two. 

Two  problems   remain.     The  first  problem  is  that  both  cos(i/2)  and 

ffl cos(27T-i/j) are equal to cos(i/2).    Given that    Ö = cos"l[cos(i/2)| , it is not 

Ö known  whether    v% — Ö    or    v2 = 27T-0.    Of course, v2 can be found 

through the following procedure: 

if   d(i/lf0) = dra 

|5 else 

i 

i 

i 
if 

'v 

I 
; 

V%  =  27T-0 

*> Unfortunately,  this  method   requires  a  lot  of CPU  time  to  implement,  so 

another way is needed.    The second problem is that once the values of v2 

arc found where    d(i/1,i/J)  = dTO , the solutions for i/J/n, i/J/18, i/J/21, and 

^J/M arc st*^ no* known.    F°r example, with two i/2 solutions, there is no 

way   to   tell   which   of  the   two   solutions   is   i/J/n   or   i/J/13   without   some 

additional work.    If there were some way to compute vinv v2nv vmv an<* 

& v\m directly ^rom ®> tncn both problems would be solved. 

J> Let <t>{ through 0ft equal the valid solutions for cos(i/3), such that 

1  £ i ^ n 
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I where 

KJ n = number of valid solutions for cos(i/2) 

Let    8j = cos"!(0j)    where    1 £ i £ n    and    0 £ Oj < rr.    Note, because 0j 

is  sorted  in   descending order  (greater  i,  smaller 0j),  Oj  will  be  sorted  in 

V ascending order (greater i, larger 0j).    The goal is now is to find some way 
KM 

w» to relate 9j - 0l1 to true anomaly of the close approach boundaries of each 

close approach region. 

M This  process  is simplified considerably by redefining close approach so 

/„> that   a   close   approach   occurs   when   satellite   2   is   within   some   distance 

threshold pdTH of the projection of the position of satellite 1 onto the orbital 

plane of satellite 2.    This new definition of close approach effectively makes i 
,v close approach  a two dimensional problem, and the new definition of close 

i 

s 

/< 

approach is completely equivalent to the old definition, so long as 

pdTH - (d'TH - zj)>" (96) 

where 

V tl — the distance from satellite 1 to the orbital plane of satellite 2 
(see Eq (69)) 

** From   Eq   (69),   the   projection  of the  position  vector of satellite   1   in  the 

PC perifocal frame  of satellite 2 on to the orbital plane of satellite 2 can  be 

represented by 

',« = <*, y, ° > <97> 
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Two final terms of interest are: 

B, = {[ajO-e^-xJ'+yj}1" (98) 

B, = {[ajd+e^+x.p+yj}1" (99) 

where  Bx  is  the  distance  from  TX    to  satellite  2's  perigee,  and  B3  is the 

distance from r    to satellite 2's apogee. 

Now all the tools are in place. Given the results of Eqs (96) - (99), 

there are three basic checks, that along with the number of valid solutions 

to Eq (83), can be used to find a set of equations relating vJ/lv v2fir v%   , 

and v2m to 9r    These three checks are 

1. Is yx > 0 

2. Is pdTH > B, 

3. Is pdTH > B2 

Since the results of each check is either true or false, there are 8 possible 

combinations of results. Bach one of these combinations represents a 

different type of close approach which requires up to three different sets of 

equations to represent possible cases with zero, two, and four valid solutions. 

W Table 1 lists the type of close approach that corresponds with each possible 

result of the three checks. 
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TABLE 1 

Conditions Required for Each Type of Close Approach 

Results of Close Approach Type Checks 
Close Approach 

Type 

y,iO pdra S B, pdra £ B, 1 

y.so Pdra S B, pdra > B, 2 

y, so pdTH > B, pdTO £ B, 3 

y.^o pdra > B, pdra > B, 4 

y, > 0 pdTH S B, P<1TH * B, 5 

y, > 0 P^TH * B. pdTH > Bj 6 

y, > 0 pdTH > B( pdffl £ B, 7 

y    • 0 PdTH > B, pdra > B, 8 

Appendix A contains the actual equations for each type of close 

approach. As a general convention within each type of close approach, when 

there are two valid solutions, both vJ/u and i/J/28 are set to zero.    When 

there are no valid solutions,  then the following procedure is used  (also see 

Eqs (19) and (20)): 

■- 

v 

i 
.1 • 

if   pdfH > Bj    and    pdTH > B2 

"wi - ° ",/,. - ° 
"j/n - 2rr        l'tm - ° 

(100) 
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if   pdra < B,   and   pdra < B, (101) 

v«/u = ° "i/u = ° 

"»/»  =   0 "t/M   =   0 

i 

I 

X«- 

Projected Position 
of Satellite 1 

Orbit of Satellite 2 

Region of 
lose Approach 

Figure 2.   Example of a Type 2 Close Approach 

The following example will demonstrate how to use the type of close 

approach   to   calculate   vyiv   v7/ir   i/J/21,   and   v%m   from   8l   through   9t. 

Inspection  of Figure  2  reveals  that  yx  £ 0,  pdTH  <  Br  and  pdTH  >  B}. 

This means that Figure 2 is an example of a type 2 close approach. Since 

the orbit of satellite 2 enters and exits the area of close approach once, 

there are two valid solutions.    Once again by inspection, Q{ is about  160°, 

s 
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and  02  is  about   170°.     For two valid solutions,  Table  A-2 contains the 

1 ■ equations to calculate i/J/u and v2nj from öj and 02: 

■ vm = e, (102) 

| vm = 2rr - 0t (103) 

S Applying Eqs (102) and (103), i/2/n equals 170°, and vt/u equals 200°.   Since 

5 there are only two valid solutions, vifJl and i/J/M are by definition equal to 

zero. 

Algorithm Summary 

S The probability of close approach between two elliptical orbits can be 

found by numerically integrating the following equation (also see Eq (22)): i 

i 

1 

V 

— 77 

Where for each numerical integration step,  dMl(ul)/di/l is computed using 

(also see Eqs (25) and (42)) 

dM(^)/d^= fcosv^1;^^^,^^        (io6) 

JW and AM,(i/t) is computed using the following procedure: 
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1.    Compute the positions of both satellites within the perifocal frame 

of satellite 2 using Eqs (43) - (62), and (68). 

* 2.    If the absolute value of y{ is small (on the order of 10~8 km) and 

Hj e8 is non zero, then find the roots of Eq (90) and use two copies of 

fu those roots to obtain four solutions.     If the absolute value of Vj is 

small and e2 is zero, then find the root of Eq (94) and use two copies 

B 
K> of that root to obtain two solutions.     If the absolute value of yx is 

not small, find the roots of Eq (83). 

jS 3.    Discard   those   roots   that   are   complex,   or   those   with   absolute 

ft values that exceed one.    The roots that remain are valid solutions. 

{£• 4.    Let 0j through 0B equal the valid solutions for cos(i/}) such that 

i 1 £ i £ n 

m where n is the number of valid solutions.    Let    9j = cos"l(0j)    where 

1 £ i £ n   and   0 £ 8, £ TT. 

6.    Using  Eqs  (98)   and   (99),  compute  the  two  distance  bounds,  By 

and   B .      Use   Eq   (96)   to   compute   the   close   approach   projected 

■ distance threshold, pdTH. 
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6. Perform the close approach checks, and locate the appropriate 

H type of close approach in Table 1.    Look up the desired type of close 

wo approach  in  Appendix A,  then  using the number of valid solutions, 

select the proper equations relating Vxnv 
vmv vmv anc* V2M to ®r 

Compute vm, vlfW v%ßV and i/|/ir 

7.    Calculate AM^i/j) with the following equation: 

AM^i/,) = Ut(vm}) - Ut(vvu) + M,(i/,m) - Ut(vim) (107) 

where (also see Eqs (25) and (35)) 

ß, = [U-e.J/O+e,)]"» (108) 

M (v) = 2 [ tan-'ö?, tan(i/,/2)] -    e» *t sin(V2) cos(V2)    1 (109) ,C ^ L [cosHi/,/2) - fl sin'(iy2)] J U09) 

t 

V 
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IV.   Probability of Close Approach Between 
Satellites in Circular Orbits 

ft Full Circular Orbit Method 

The purpose of this section is to develop a method for calculating the 

'" probability of close approach between two satellites in circular orbits. 

F, To   simplify   the   analysis,   the   close   approach   of   two   satellites   is 

redefined to be whenever the angle between the radius vectors of satellite 1 

i\ and satellite 2 (angle D) is less than or equal to some angle threshold DTH, 

.f where DTH is equal to the angle between the radius vector of satellite 1 and 

satellite   2   when   the   distance  between  the  two  satellites  is  equal  to  the 

V distance threshold of close approach, dra. When a close approach is possible 

((rj-Tj! < dTH), the plane trigonometry law of cosines (7:196) can be used to 

solve for Dm as a function of dTH: 

dTH = ',' + 'f - 2r,r1cos(DTH) 

X r? + r| - d»    1 

where 

rj = magnitude of the radius vector of satellite 1 
8v rt - magnitude of the radius vector of satellite 2 

dTH = distance threshold for close approach 

jS DTH = angular distance threshold for close approach 

£ Note that  using an  angle threshold  of DTH  is completely equivalent  to using 
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a distance threshold of dra so long as both satellites are in circular orbits 

and   DTH   is  computed   using  Eq   (110).     The  use  of Dra  simplifies  the 

remaining mathematics, because by projecting the position of satellite 2 onto 

a sphere of radius rv spherical trigonometry can be used to obtain the limits 

of integration. 

Figur* 3.   Spherical Geometry of Circular Orbit Close Approach 
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i 
Figure 3 shows the orbital path of satellite 1, and the projection of the 

1 orbital  path  of satellite 2.     For circular orbits,  the position of zero mean 

anomaly is arbitrary, so for convenience, the mean anomaly of both satellites 
v 

(Mj and M2)  are assumed to be zero where the two orbital planes cross in 

KJ the northern hemisphere. When the mean anomaly of satellite 1 is known, a 

close approach is possible whenever some portion of the projection of satellite 

2's orbit comes within DTH (great circle arc) of satellite 1.    The probability 

jg of close  approach  (PCA)  can  be determined by integrating the joint density 

•n function  (see Eq  (10)) over the region of Mj and M,, where D is less than 

or equal to D?H.    If Ml2 and Mn are the unknown limits of integration over 

Mj, then PCA, expressed in terms of Mn and Mu, is equal to 

! Pe.-f"fM"^ 

I 

V. 

'.', 

V. 
i 

I 

-M. 

'-TO 

M„ 
dM, 

Mtl 

AM, = M„ - M„ (112) 

v' fM>» AM, 

* M. ■II 

Two more  things  art  needed  to compute FCA.     First, an equation for 

AM, as a function of M, is needed.    Second, the integration limits over M, 
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must be found for which a close approach with satellite 2 is possible. Using 

spherical trigonometry (7:198-200), Eqs (114) and (115) can be derived (see 

Figure 3): 

sintMjJ/sintrr^) = sin(x)/sin(0) 

sin(x) = sin(0) sinfM,) (114) 

cos(DTH) a cos(x)cos(AM,/2) 

| AM, = 2 cos-1[cos(DTH)/cos(x)] (115) 

where 

x ss angle between the radius vector of satellite 1 and the orbital plane 
of satellite 2 

Given the trigonometric relationship (7:188) 

§ cos(x) m [l-sinW1 

I Eq (114) can be used to obtain an equation for cos(x): 

1 cos(x) - [1 - su'Wain^M,)]1/* (116) 

H Substituting Bq (116) into Eq (116), yields the final equation for AM,: 

i AM, = 2 cos•|{cos(DTH)/tl-«n•(e)sm,(M|))
l',) (117) 

8 The integration regions can be found through Eq (114), by replacing x 

A with D^ and M, with M, and then solving for M. 
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sin(Dra) = sin(O) sin(M) 

sin(M) = 5in(DTH)/5in(6) 

M m stn^lsmiD^/sinW) (118) 

If 8in(DTH)/sin(8)  is less than  1, then there are two regions.     The first 

region is from -M to Mt and the second is from ir-M to rr+M. 

If sin(DTH)/sin(0) is greater than 1, then the integration is from 0 to 

2tr, because in this case, for   0 < M, < 2n , there is always some chance of 

a close approach with satellite 2. 

Assuming that there are some places in satellite l's orbit where there is 

no possibility of a close approach by satellite 2, then the final equation for 

Pea« 

pcA m  f M cos-Hcos(Dw)/[l-sin>(e)sin»(Ml)]^) m 

4  r+M co»-'{cos(Dffl^ (n9) 

IT—M 

There is no closed form solution for the equation above, so numerical 

integration must be used to obtain the final solution for probability of close 

approach between two satellites in circular orbits. 
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Circular Orbit Approximation Method 

In the previous section no closed form solution could be be found for 

PCA   between  two  satellites  in  circular orbits.     However,  there is  a special 

case which does have a closed form solution for PC1. 

Assume that satellite 1 and satellite 2 are in circular orbits where DTH 

is small, and 8 is not small.    This also implies that M2 and IA{ (or Mj-7r) 

are also small.    For small absolute values of u, the following approximations 

will be of use (with 3rd order effects and higher discarded) (7:454-457): 

sin(u) = u 

cos(u) * 1 - u2/2 

(1 - u
2)1'2 = 1 - u2/2 

1/(1 - uf) * 1 + u2 

Eq (117) can be re-written as 

cos(AM2/2) = cos(DTH) / [1 - sin2(8) sin2^)]1'2 (120) 

Substituting   the   small   value    approximations    into   Eq    (120)    and   then 

simplifying yields 

(l~AM2/8) = (l-D^/2) [1 + sin2(8) MJ/2] 

1 - AMj/8 = 1 4- sin2(0) Mj/2 - D2
TH/2 - D^Ha?je^M}/4 

"""Nth Order 

AMJ/8 = D2
TH./2 - sin2(8) M*/2 

45 



1 

I 

AM, = 2 [ D*ra - sin3(0) M| ]l" 

AM, = 2 sin(O) [ D3
TH/sin2(e) - U\ I1» (121) 

When Mj-7T is very small, then another set of equations must be used. 

If    Mj = 7T-fu , where the absolute value of u is small, then the    following 

jg approximations can be used: 

1$ sin(M1) = sin(7T-u) 

K sin(M1) = sin(7r) cos(u) -f sin(u) cos(7r) 
k 

sinCM^  - -sin(u) 

i»   *. 

sin(M,) 2 -u 

| sin(M,) ^ rr-M, (122) 

I 
Substituting   the   small   value   approximations   (with   small   M^ir)   into   Eq 

(120), results in 

M U-AMJ/8) = (l-DTH/2) [1 + «n'W (tr-M^/2] 

1 - AMJ/8 = 1 -f sin2(0)(7r-M1)V2 - D2
TH/2 - T3?^sin^Uzi^Ml)V4 

4th Order 

c AMJ/8 = D3
TH/2 - sinJ(0) (TT-M^/2 

AM, = 2 [ D*TH - sin2(9) (n-M,)2 ]»2 

^ AM. = 2 sin(O) f D2
TH/sin'(G) - (TT-M,)1 ll" (123) 

By   substituting   the   small   value   approximations   into   Eq   (118),   the 
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limits of integration can be found: 

M = DTO/sin(0) (124) 

Eqs (121)  and (122)  are approximations for Eq (117), and Eq (124)  is an 

I approximation for Eq (118).    Substituting Eqs (121), (123), and (124) into 

m Eq (119), results in: 

/ 

,   M sin(O) [ D^/sin'Ce) - U\ ]'/» 
*CA  ~  27?  dMl 

-M 

7T+M 

»r-M 

+ J*+M gfaffl C iy*m - dr-V g dMt     (126) 

I where Eq (124) is used to compute M.   Given that (7:411) 

| / (a2-u')1/a du = [ u (a'-u')1" 4 a* sin-l(u/|a|) ]/2 (126) 

I Eq  (125)  can be  directly integrated by making the following substitutions 

into Eq (126): 

For small M,: For small M,-TT: 

a = D^sinfG) a = DTH/sin(9) 

B u = Mj u = TT-Mj 

| du = dMj du = -dMj 

g Integrating Eq (125) and simplifying results in 

i 
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sin(e) 

[M'(^-"! 
J/2 

+ -Sk sin-.( 
sin'(6)        \ 

M, 
|DTH/sm(«)|J 

Dra/sin(e) 

-Dra/sin(e) 

sin(8) 

47T1 [ (*-M>' (s& - ("-M')' r 

sin'(e) 
+ —?*- sin"1 7T-M. 

p)_/ifa(e)i 

jr+pjH/sinCe)] 

^-^„/sinCe)] 

PCA = 
sin(8) 

4nJ 
r _Sk ft _ _5k/-iYl 
L sinJ(e) \ 2 /      Sin'(e) \     2 /J 

sin(8) 

47T* [sin'(8)\    2/     Sin'(8)\2/J 

I 

I 

sin(8) / 2w D»H 
CA       in1   \ sin'(8) 

P.. = D*H 
c*   ' 2TT sin(8) 

(127) 

A" 

Equ (128) is the closed form approximate solution for P0A, where satellite 1 

and satellite 2 are in circular orbits, DTH is small, and 9 b not small. 

ä 
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V.    Algorithm Verification 

Analysis Software 

To verify the algorithms from the previous chapters, three computer 

programs were created. 

The first program is called Statistical Simulation of Probability of Close 

Approach or SSPCA. SSPCA queries the user for a close approach distance 

threshold and for a set of orbital parameters for satellite 1 and satellite 2 

and then computes the probability of close approach between both satellites 

through a statistical simulation. The first step in this process is to select 

two random numbers that are uniformly distributed between 0 and 2n to 

represent the mean anomalies of the two satellites. For the selected mean 

anomalies, SSPCA calculates the distance between the two satellites. If the 

computed distance between the two satellites is less than or equal to the 

input distance threshold, then a close approach occurs. This process is 

repeated 100,000 times, and a count is kept of how ma*, close approaches 

occurred.     Eq   (128)  is then  used  to calculate the simulated probability of 

(J/ close approach: 

P. = nr. / 100,000 (128) 

where   Ps   is  the  simulated   probability  of close  approach,   and   nCA   is  the 

number of close approaches that occurred in the simulation. 

The   second   program    is   called   Circular   Orbit   Probability   of   Close 

Approach  or COPCA.     COPCA  first queries  the  user for a close  approach 

Sß^Sä^ 



I 
distance threshold and for a set of orbital parameters for two circular orbits. 

COPCA then computes the  probability of close approach between the two 

gj satellites using both the full and the approximate circular orbit methods of 

calculating probability of close approach that were described in chapter IV. 

W The   third   program   is   called   Elliptical   Orbit   Probability   of   Close 

Approach or EOPCA.    EOPCA queries the user for a distance threshold and 

™ for a set of orbital parameters for the two satellites and then computes the 

SÜ probability of close approach using the elliptical orbit method of calculating 

probability of close approach that was described in chapter III. 

M The numerical integration in both the COPCA and EOPCA programs 

fi were   performed   using   Simpson's   rule   with   an   step   size   of  approximately 
v! 

27T/10,000 radians. 

i 
Statistical Simulation of Probability of Close Approach 

v1 
SJI P°r analysis purposes,  assume that the analytically derived probability 

of close approach (PCA) is correct.    For large sample sizes and values of both 

PCA and (1-PCA) which are not small, the number of close approaches that 

occur   in   the   statistical   simulation   can   be   approximated   by   a   normal 

distribution with a mean of (5:225-226) 

A nCA = ns PCA (129) 

\" 

I 

where 

nCA - mean number of close approaches in the simulation. 
& ns = number of samples or iterations in the simulation. 
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and a standard deviation of (5:225-226) 

°* = i °s PCA 0 -POA) I*" (130) 

Likewise,   by   dividing   both   Eqs   (129)    and    (130)    by   ns,   Ps   can   be 

® approximated by a normal distribution with a mean of P0A, and a standard 

8 deviation of 

| a? = { PCA (1-P0A) / ns ]«/' (131) 

H Using Eq (131), the difference between Ps (see Eq (128)) and PCA can 

-> now   be   found   in   terms   of  standard   deviations.      For   a   perfect   normal 

distribution, the absolute value of the difference between Ps and PCA will be 

less than .6745 a? for .5 of the simulation runs, and less than 1.96 a? for 

'c 

i 
£ .95 of the simulation runs (7:578).    These two thresholds are tests that can 

1 

*  m 

determine how well the simulated solution for probability of close approach 

matches   the   analytical  solutions   for  PCA   from   the   COPCA   and   EOPCA 

programs. 

V Test Cases y   

Table  2  contains   a   list  of the  orbital  parameters  of satellite   1   and 
v 
*j, 

^ satellite 2 that are held constant through all test cases.    Table 3 contains a 

list of the orbital parameters of satellite 1 and satellite 2 for each of the 16 

test    cases that   were   used    to   verify   the   probability   of   close   approach 

v! 
j|                     algorithms described   in  chapters  III   and   IV.     Through   all  test  cases,  the 
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I 
eccentricity of both satellites varied from 0 to .5, with the eccentricity of 

both satellites being the same within each test case. For convenience, the 

longitude of the ascending node of both satellites and the inclination of 

satellite 1 were set to 0° so that the inclination of satellite 2 would equal to 

the angular separation of the two orbital planes. 

TABLE 2 

Orbital Parameters Held Constant Through All Test Cases 

s 
i 

! 

R 
I 

Orbital Parameters Satellite 1 Satellite 2 

Perigee Radius 

Inclination 

Argument of Perigee 

Longitude of the Ascending Node 

7000 km 

0° 

0° 

0° 

7500 km 

varies 

90° 

0° 

i 

Test cases 1-8 (orbits with an eccentricity of 0 or .1 ) were run 

through the SSPCA program with distance thresholds of 1000, 2000, 4000, 

8000, 12000. and 20000 km. Test cases 9-16 (orbits with an eccentricity of 

.3 or .5) were run through the SSPCA program with distance thresholds of 

4000, 8000, 12000, and 2000U km, making a total of 80 SSPCA runs. 

All circular orbit test cases (test cases 1-4) were run through the 

COPCA program with distance thresholds of 1000. 2000. 4000, 8000, 12000. 

20000 km, making a total of 24 COPCA runs. 

i hi 
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TABLE 3 

Orbital Parameters of Test Cases 

i 

B 

i 

1 

B 

£ 

Orbit 
Test 

Case # 
Eccentricity of 
Both Satellites 

Angular Separation 
of Orbital Planes 

1 .0 0° 

2 .0 0° 

3 .0 30° 

4 .0 60° 

5 .0 90° 

6 .1 0° 

7 .1 30° 

8 .1 60° 

9 .1 90° 

10 .3 0° 

11 .3 30° 

12 .3 60° 

13 .5 0° 

14 .5 30° 

15 .5 60° 

16 .5 90° 
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All test cases were run through the EOPCA program. All test cases 

with an eccentricity of 0 or .1 (test cases 1-8) were run with distance 

thresholds of 1000, 2000, 4000, 8000, 12000, and 20000 km. All test cases 

with an eccentricity of .3 to .5 (test cases 9-16) were run with distance 

thresholds of 4000, 8000, 12000, and 20000 km, making a total of 80 EOPCA 

runs. 

Note that the distance thresholds of 1000, and 2000 km were only used 

in SSPCA, COPCA, and EOPCA runs involving test cases with an 

eccentricity of .1 or less. This is because when the distance threshold drops 

below 4000 km and the test case eccentricity is .3 or larger, the probability 

of close approach is generally too small for a statistical simulation to be of 

much value. 

* • 
A 
•*„ 
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VI.    Results and Discussion 

Tables B-l and B-2 in Appendix B contain the test results of the 

COPCA program, along with the corresponding simulation results. Table 4 

shows  how  well the simulated PCA  matched the PCA computed in  COPCA 

for all runs where PCA  is not equal to  1.     Runs with a PCA of one were 

excluded   from   Table   4   because   the   computed   PCA   always   equaled   the 

simulated  PCA   when  the  computed  PCA  was  equal to one,   and  because a 

equals zero when  PCA  equals one.    The mean error listed in Table 4 is the 

mean of the error (scaled by a ) between simulated PCA and analytical PCA 

for all COPCA runs with a PCA less than one. 

TABLE 4 

Simulated Probability of Close Approach Versus 
COPCA Probability of Close Approach 

Fraction of 
COPCA Runs Normal Simulated              i 
With Errors Distribution PCA 

Less Than .6745 a .5000 .5000 

Less Than 1.90 a .9500 1.0000 

Mem Error (a ) .0000 .4445                 j 

L Tablfs   R   3   and   B   4   in   Appendix   B   contain   thr   test   result*  of thr 

COPuA  program,  where the probability of close approach is computed using 
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both the full circular orbit method and the circular orbit approximation 

method described in chapter IV.   For all runs with a PGA less than .01, the 

circular orbit approximation method agreed with the full circular orbit 

method to within 1%. When the angle between the orbital planes is 60° or 

greater, the error between the full circular orbit method and the circular 

orbit approximation method was generally less than 3% when the computed 

PCA   was  less  than  596.     As  expected   (see  Eq   (127)),  given  the  distance 

threshold, the error in the approximation method is inversely proportional to 

the angle between the two orbital planes. Similarly, given the angle between 

the orbital planes, the error in the approximation method is directly 

proportionai to the distance threshold. 

i 

i 

§ 

§ 

i 

TABLE 5 

Simulated Probability of Close Approach Versus 
EOPCA Probability of Close Approach 

Fraction of 
EOPCA Runs 
With Errors 

Normal 
Distribution 

Simulated 

Less Than .6745 c 

Less Than 1.96 a 

Mean Error (a ) 

.6000 

.9500 

.0000 

.5000 

.9657 

.00"4 

Tables B-5 through B-10 in Appendix B contain the test results of 

the EOPCA program, along with the corresponding simulation results.   Tabl* 

n 
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5 shows how well the simulated PCA matched the PCA computed in EOPCA 

for all runs where PCA is not equal to 1.    As with the COPCA test results, 

\ft runs with  a PCA of one were excluded from Table 5. because the computed 
it 

PCA always equaled the simulated PCA when the computed PCA was equal to 

5 
one,  and  because     a   = 0     when     PCA  =  1   .     The mean error listed  in 

jfr Table 5 is the mean of the error (scaled by a ) between simulated Pr    and 

m analytical PCA for all EOPCA runs with a PCA less than one. 

The probability of close approach computed  by both the COPCA and 

jjj EOPCA   programs   favorably   matches   the   simulated   probability   of   close 

yb approach computed  by the SSPCA  program.     However, the mean error for 

the   20   COPCA   runs   with   a  computed   PCA   less   than   one   (see   Table   4) 

|j indicates that a possible bias exbts between simulated PCA and the analytical 

J<< PCA   computed   by   COPCA.     Similar  biases  exist  within  the  EOPCA  test 

results   when   EOPCA   runs   with   only  the  same  eccentricity   arc  examined. 

When all 72 EOPCA runs with a computed PCA less than one (sec Table 5) 

>• are considered, there does not appear a bias.    Given the limited number of 

circular orbit  test  cases,  the small  bias  in  the  COPCA  test  results  is not 

considered significant. 
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VII.   Suggestions and Recommendations 

H To   develop   a  method  to  calculate  the  probability of close  approach 

*w between two satellites, two major assumptions were made.    First, all orbital 

elements, except for true  (or mean)  anomaly,  were assumed to be constant 

B over time.     Second, the mean anomalies of both satellites were assumed to 

be  independent  random  variables that  are  uniformly  distributed  between  0 

and   2n.      While   these   assumptions   greatly   simplified   the   derivation   of 

j? probability of close approach, they also limited its usefulness. 

Three   follow-up   studies   are   recommended.        The  goal   of the  first 

la study would be to develop methods to calculate probability of close approach 

•> between two satellites in elliptical orbits, where there are linear perturbations 

to the argument of perigee and the longitude of the ascending nude of both 

fj satellites.      In   this   case,   both   argument   of  perigee   and   longitude  of the 

• % ascending  node  would  be  treated  as linear functions of time.     The goal of 

the  second  study  would   be  to  develop  methods  to  calculate  probability  of 

If close  approach  between  two satellites in  elliptical orbits where the duration 

of the specified time interval is too short, or the ratio of the orbital periods 

of the two satellites are such that the mean anomalies of both satellites are 

*5 not   independent.      The   goal  of  the  final  study  would   be  to  find   ways   to 

reduce the computational expense involved in calculating probability of close 

approach.    In this paper, numerical integration was used to directly calculate 

the  probability of close  approach  between  two satellites.     This approach can 

be  used  to accurately calculate the probability of close approach  between any 

two satellite,   with  eccentricities  leos  than   I.U,  but  it can  be computational!) 

g 

."-• 

5* 
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expensive. For two satellites with an eccentricity less than .3, it is possible 

that a series approximation for probability of close approach could be found 

that would offer acceptable precision, and at much less computational 

expense than methods that use numerical integration. For two satellites in 

circular orbits, even simpler series approximations for probability of close 

approach could ue possible. Both forms of series approximations for 

probability of close approach merit further investigation. 

i 
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Type 1 Close Approach 

A type 1 close approach occurs when 

1. y,^0 

2. pdffl S B, 

3. pdra£Ba 

When there are 0 valid solutions, then 

i 
1 
I 

"vii - ° 

"l/ll = ° 

When there are 2 valid solutions, then 

"l/U = 27T - e, 

«Vi = 2« - 0, 

When there are 4 valid solutions, then 

"t/n =e* 

"»/i» =e. 

"t/u = ° 

vm = ° 

"mi - ° 

«'wi = ° 

vm = 2* - e« 

",/« = 271-0, 

T' 
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Type 2 Close Approach 

A type 2 close approach occurs when 

1. y^O 

2. pdTH^Bl 

3-   Pdra > B, 

It is not possible to have 0 valid solutions in a type 2 close approach. 

When there are 2 valid solutions, then 

"«li = 9J "I/II - ° 

i 
I 
I 

"i/n = 2TT - e, 

When there are 4 valid solutions, then 

"./.. = °: 
"»/» - e» 

"I/M = ° 

"l/ll  = 94 

i/,m = 2ir - 0, 

5 
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Type 3 Close Approach 

A type 3 close approach occurs when 

1-  y, £ o 

2. PdTH > B, 

3. pd^iB, 

$ 

i 

It is not possible to have 0 valid solutions in a type 3 close approach. 

When there are 2 valid solutions, then 

>i = ~Qt 

vHit = 6i 

When there are 4 valid solutions, then 

"i/ti = ° 

vw = ° 

I 
8 

"WH = ~°4 

Vf/U = Öi 

vm = 6» 

"»/» - ei 

I 
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Type 4 Close Approach 

A type 4 close approach occurs when 

l.  y, £ o 

2.   pdTH > B, 

3-   pdTH > B, 

When there are 0 valid solutions, then 

V 
V 

i 

I 

s 

3 

"t/n = ° 

vtm = 27r 

When there are 2 valid solutions, then 

vm = 0,-2* 

"i/u = e. 

When there are 4 valid solutions, then 

"«/.. = 64 - 2rr 

vv» = ei 

«V, = ° 
vm - ° 

",/,, = ° 
"»/» = ° 

"I/II = e. 

"t/li = e. 

» 
V 

.** 
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Type 5 Close Approach 

A type 5 close approach occurs when 

SH 1.   y, > 0 

3-   pd„SB, 

When there are 0 valid solutions, then 

"«ii = ° "w = ° 

VW  =  0 "l/M   =  0 

When there are 2 valid solutions, then 

ft 
vt,a = e» vw = ° 

When there are 4 valid solutions, then 

"«ii = °i "«.■ = 2TT - e, 

"l/ll = 9« "t/M = 27T -  e, 
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Type 6 Close Approach 

A type 6 close approach occurs when 

» !■ y, > ° 

| 2.   pd^SB, 

v. 3-   PdTH > B, 

5 
m It is not possible to have 0 valid solutions in a type 6 close approach, 

ng When there are 2 valid solutions, then 

>: %u = ei vmi = ° 

"I/II = 2* - e: vw = ° 

When there are 4 valid solutions, then 

"1/11 = ei ''»/»i = 2»r - 0, 

"»/u * * " e« "I/B = 2»r - e, 

i 
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Type 7 Close Approach 

A type 7 close approach occurs when 

1. y, > 0 

2. pdra > B, 

3-   pdraiB} 

It is not possible to have 0 valid solutions in a type 7 close approach. 

When there are 2 valid solutions, then 

2/12 2 2/22 

When there are 4 valid solutions, then 

"t/n = -°i "t/11 = 2w - 0, 

vWi = 64 "«/n = 2» - 0, 
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Type 8 Close Approach 

A type 8 close approach occurs when 

i 
i 
I 
s? 

5 

1. y, > 0 

2. pdre > >3, 

3. pdra > B, 

When there are 0 valid solutions, then 

",/,»= ° 
vtl» = 2lt 

When there are 2 valid solution*, then 

"«.Ml   =   "e< 

"«ii = 2* ~ e* 

When there are 4 valid solutions, then 

"a/n = -e. 

"»/u = 2TT - 64 

",/,, = ° 
vtm = ° 

*,/,. = ° 
"./» = ° 

Vi = 2w - 8, 

"I/M = 2rr - 0, 
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TABLE B-l 

COPCA Test Results For Distance Thresholds Less Than 4000 km 

s 

B 

I 

I 

Distance 
Threshold 

(km) 

Angle 
Between 
Orbital 
Planes 

COPCA Simulation Simulated 
Error (cr^) Error (%) 

1000 0° .038068 .000605 .038510 .7306 1.16 

2000 0° .085327 .000883 .086210 1.0000 1.03 

1000 30° .004580 .000214 .004670 .4206 1.97 

2000 30° .023638 .000480 .024010 .7750 1,57 

1000 60° .002632 .000162 .002790 .9753 6.00 

2000 60° .013287 .000362 .013250 -.1022 -.28 

1000 90° .002278 .000151 .002370 .6093 4.04 

2000 90° .011471 .000337 .011100 -1.1009 -3.23 
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TABLE B-2 

COPCA Test Results For Distance Thresholds Not Less Than 4000 km 

v. 

i 
V 

I 
? 

Distance 
Threshold 

(km) 

Angle 
Between 
Orbital 
Planes 

COPCA Simulation Simulated 
Error (a ) Error {%) 

4000 0° .176602 .001206 .178280 1.3914 .95 

8000 0° .371487 .001528 .373250 1.1538 .47 

12000 0° .620316 .001535 .620220 -.0625 - 02 

20000 0° 1.000000 .000000 1.000000 - .00 

4000 30° .128739 .001059 .129460 .6808 .56 

8000 30° .361425 .001519 .363150 1.1356 .48 

12000 30° .629654 .001527 .629590 -.0419 -.01 

20000 30° 1.000000 .000000 1.000000 - .00 

4000 60° .058214 .000740 .058130 -.1135 -.14 

8000 60° .315640 .001470 .316940 .8840 .41 

12000 60° .671401 .001485 .671640 .1609 .04 

20000 60° 1.000000 .000000 1.000000 - .00 

4000 90° .049658 .000687 .050050 .5691 .7? 

8000 90° .233877 .001339 .233390 -.3637 -.21 

12000 90° .75452'z .001361 .755730 .8876 .16 

20000 90° 1.000000 .000000 1.000000 - .00 

i 
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TABLE B-3 

COPCA Test Results Using Circular Orbit Approximation 
For Distance Thresholds Less Than 4000 km 

f       ..' 

1 

? 
» 

8 

Distance 
Angle 

Between COPCA 
Threshold 

(km) 
Orbital 
Planes 

COPCA Approximate 

PCi Error (%) 

1000 30° .004580 .004553 -.59 

IP! 
2000 30° .023638 .022873 -3.24 

1   w 

3* 
V 

1000 60° .002632 .002629 -.11 

2000 

1000 

60° 

90° 

.013287 

.002278 

.013206 

.002276 

-.61 

-.09 

i 2000 90° .011471 .011437 -.30 

ft 

I 
K 

; 

* 
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TABLE B-4 

COPCA Test Results Using Circular Orbit Approximation 
For Distance Thresholds Not Less Than 4000 km 

Distance 
Threshold 

(km) 

Angle 
Between 
Orbital 
Planes 

COPCA 
COPCA 

Approximate 

PCA Error (%) 

4000 30° .128739 .097981 -23.89 

8000 30° .361425 .433547 19.95 

12000 30° .629654 — - 

20000 30° 1.000000 - - 

4000 60° .058214 .056569 -2.83 

8000 60° .315640 .250309 -20.70 

1200C 60° .671401 .697936 3.95 

20000 60° 1.000000 - - 

4000 90° .049658 .048990 -1.35 

8000 90° .233877 .216774 -7.31 

12000 90° .754522 .604430 -19.89 

|         20000 90° 1.000000 - - 
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I 
TABLE B-5 

EOPCA Test Results For Circular Orbits With 
Distance Thresholds Less Than 4000 km 

i 

f, 
i 

i 

Distance 
Threshold 

(km) 

Angle 
Between 
Orbital 
Planes 

COPCA Simulation 

*> 

Sim tinted 

PCA Error {a ) Error (%) 

1000 0° .038« JS .000605 .038510 .7306 1.16 

2000 0° .085327 .000883 .086210 1.0000 1.03 

1000 30° .004580 .000214 .004670 .4206 1.97 

2000 30° .023638 .000480 .024010 .7750 1.57 

1000 60° .002632 .000162 .002790 .9753 6.00 

2000 60° .013287 .000362 .013250 -.1022 -.28 

1000 90° .002278 .000151 .002370 .6093 4.04 

2000 90° .011471 .000337 .011100 -1.1009 -3.23 

S 

i 

74 



I 
TABLE B-6 

EOPCA Test Results For Circular Orbits With 
Distance Thresholds Not Less Than 4000 km 

•j 

! 

*i 

v 

Distance 
Threshold 

\     (km) 

Angle 
Between 
Orbital 
Planes 

COPCA Simulation Simulated 

P<u Error (ffp) Error (%) 

4000 0° .176602 .001206 .178280 1.3914 .95 

8000 0° .371487 .001528 .373250 1.1538 .47 

12000 0° .620316 .001535 .620220 -.0625 -.02 

20000 0° 1.000000 .000000 1.000000 - .00 

4000 30° .128739 .001059 .129460 .6808 .56 

8000 30° .361425 .001519 .363150 1.1356 .48 

12000 30° .629654 .001527 .629590 -.0419 -.01 

20000 30° 1.000000 .000000 1.000000 - .00 

4000 60° .058214 .000740 .058130 -.1135 -.14 

8000 60° .315640 .001470 .316940 .8840 .41 

12000 60° .671401 .001485 .671640 .1609 .04 

20000 60° 1.000000 .000000 1.000000 - .00 

4000 90° .049659 .000687 .050050 .5691 .79 | 

8000 90° .233877 .001339 .233390 -.3637 -.21 

12000 90° .754522 .001361 .755730 .8876 .16 

2000Ü 90° l.üOOOÜÜ .000000 1.000000 - .00 
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TABLE B-7 

EOPCA Test Results For Eccentricity of .1 With 
Distance Thresholds Less Than 4000 km 

Distance 
Threshold 

(km) 

Angle 
Between 
Orbital 
Planes 

COPCA Simulation Simulated 

PCA 
Error (<7 ) Error {%) 

1000 0° .021034 .000454 .021520 1.0705 2.31 

2000 0° .067767 .000795 .068180 .5195 .61 

1000 30° .002449 .000156 .002030 -2.6859 -17.11 

2000 30° .016417 .000402 .016320 -.2413 -.59 

1000 60° .001414 .000119 .001170 -2.0504 -17.26 

2000 60° .009292 .000303 .008960 -1.0957 -3.57 

1000 90° .001225 .000111 .000950 -2.4775 -22.45 

2000 90° .008027 .000282 .007530 -1.7624 -6.19 
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TABLE B-8 

EOPCA Test Results For Eccentricity of .1 With 
Distance Thresholds Not Less Than 4000 km 

Ö 

Distance 
Threshold 

(km) 

Angle 
Between 
Orbital 
Planes 

COPCA Simulation Simulated 

PCA 
Error (af) Error (%) 

4000 0° .154566 .001143 .155130 .4934 .36 

8000 0° .327955 .001485 .329990 1.3704 .62 

12000 0° .533222 .001578 .533210 -.0076 -.00 

20000 0° 1.000000 .000000 1.000000 - .00 

4000 30° ,091240 .00091i .091410 .1866 .19 

8000 30° .313524 .001467 .315190 1.1357 .53 

12000 30° .535690 .001577 .535530 -.1015 -.03 

20000 30° 1.000000 .000000 1.000000 - .00 

4000 60° .045010 .000656 .045230 .3354 .49 

8000 60° .234065 .001339 .233720 -.2577 -.15 

12000 60° .546098 .001574 .547590 .9479 .27 

20000 60° 1.000000 .000000 1.000000 - .00 

I  4000 90° .038555 .000609 .038810 .4187 .66 

\       8000 90° .179613 .001214 .178870 -.6120 -.41 

12000 90° .581394 .001560 .582690 .8308 on 

20000 90° 1.000000 .000000 1.000Ü0Ü ~ .ÜÜ 

i. 
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TABLE B-9 

EOPCA Test Results For Eccentricity of .3 

8 

w 

* 

i 

I 

*. *. 

Distance 
Threshold 

(km) 

Angle 
Between 
Orbital 
Planes 

COPCA Simulation Simulated 
PCA Error (<rp) Error (%) 

4000 0° .067156 .000791 .066410 -.9431 -1.11 

8000 0° .226341 .001323 .226230 -.0839 -.05 

12000 0° .374049 .001530 .375610 1.0203 .42 

20000 0° .762220 .001346 .762770 .4086 .07 

4000 30° .027733 .000519 .027410 -.6224 -1.16 

8000 30° .192271 .001246 .191640 -.5064 -.33 

12000 30° .363538 .001521 .364400 .5667 .24 

20000 30° .773937 .001323 .774410 .3575 .06 

4000 60° .013120 .000360 .013530 1.1389 3.13 

|  8000 60° .109096 .000986 .108750 -.3509 -.32 

12000 60° .302533 .001453 .301440 -.7522 -.36 

20000 60° .819091 .001217 .820710 1.3303 1.98 

4000 90° .010933 .000329 .011360 1.2979 3.91 

8000 90° .090037 .000905 .090000 -.0409 -.04 

12000 90° .269083 .001402 ,267690 -.9936 -.52 

20000 90° .849413 .001131 .851050 1.4474 1.93 

i 
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TABLE B-10 

EOPCA Test Results For Eccentricity of .5 

! 

I 

5; i. 

J\ 

i 
ft 

I 
V. 

i 

S 

Distance 
Threshold 

(km) 

Angle 
Between 
Orbital 
Planes 

COPCA Simulation Simulated 

PCA Error (ffp) Error (%) 

4000 0° .015125 .000386 .014750 -.9715 -2.48 

8000 0° .066378 .000787 .065430 -1.2046 -1.43 

12000 0° .185335 .001229 .185330 -.0041 -.00 

20000 0° .434822 .001568 .435010 .1199 .04 

4000 30° .002293 .000151 .002270 -.1523 -1.00 

8000 30° .042547 .000638 .041490 -1.6567 -2.48 

12000 30° .150654 .001131 .150520 -.1185 -.09 

20000 30° .427634 .001564 .427660 .0166 .01 ! 

4000 60° .000682 .000083 .000610 -.8675 -10.58 

8000 60° .010386 .000321 .010230 -.4860 -1.50 

12000 60° .108902 .000985 .108390 -.5198 -.47 

20000 60° .390383 .001543 .389900 -.3130 -.12 

4000 90° .000434 .000066 .000430 -.0606 -.92 

8000 90° .008820 .000296 .008590 -.7770 -2.61 

12000 90° .085002 .000882 .085920 1.0408 1.08 

20000 90° .341475 .001500 .338930 -1.6967 -.75 
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i 

1 

I 

i 

c  c 

c c 
C  SSPCA - Statistical Simulation of the Probability     C 
C of Close Approach C 
C C 
c c 

INTERFACE TO SUBROUTINE RNDINICC] 
END 
INTERFACE TO REAL*8 FUNCTION RANDOM EC] 
END 

C - C 
PROGRAM SSPCA 
CHARACTER YESNO*4 
LOGICAL*4 DEBUG. OBSCUR 
INTEGERS I. J. K. ONE. TWO. CA. OCA 
REAL*8 DX, DY, DZ. DR 
REAL*8 Ml. Al. El. INC1. NU1. ARCPA1, LONAN1. XI(4) 
REAL*8 N2. A2. E2. INC2. NU2. ARGPA2. L0NAN2. X2(4) 
REAL*8 DTH. RANDOM, RANGE. DBLE 
REAL*8 HALFPI.PI,TiOPI.DEGRAD.RADDEG 
REAL*8 ER. DU. TU 
COMMON /ADMIN/ DEBUG 
COMMON /ASTRO/ ER, DU. TU 
COMMON /COMPAR/ DX. DY. DZ. DR 
COMMON /CONST/ HALFPI. PI. TWOPI. DEGRAD. RADDEG 
COMMON /SAT17  Ml. Ai. El. INC1. NU1. ARGPA1. LONAN1. XI 
COMMON /SAT2/  M2. A2. E2. INC2. NU2. ARGPA2. LONAN2. X2 
PARAMETER (ONE-1. Ti0«2) 
ER - 6378.145D0 
DU » 6378.145D0 
TU ■ 806.8118744D0 
PI-3.141592653589793D0 
HALFPI-PI/2.0D0 
T¥OPI-2.0D0*PI 
DEGRAD-PI/180.0D0 
RADDEG-180.0D0/PI 

C    ♦  * 
C   » Initialize Random Number Generator * 
C  *  

CALL RNDINI 
C   * * 
C    * Incut Orbital Elements of Sat 1   * 
C    ♦  * 

WRITEC'.IQCC) ONE 
READ (*.1010) Al 
HKITE(*.1Q2ü> Qh'tL 
READ 'V1010) El 
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I 

WRITE(*.1030) ONE 
READ <*.1010) INC1 
WRITE(*,1040) ONE 
READ <*.1010) ARGPA1 
WRITE(♦.1050) ONE 

c 
c 
c 

READ (*,1010) LONAN1 

* Input Orbital Elements of Sat 2 
————————— — — 

* 
 * 

I 

i 
I 
I 

WRITE(*.1000) TWO 
READ C*.1010) A2 
WRITE(*.1020) TWO 
READ (*.1010) E2 
WRITEC*,1030) TWO 
READ <*.1010) INC2 
WRITE(*.1040) TWO 
READ C*.1010) ARGPA2 
WRITE(*.1050) TWO 
READ <*.1010) L0NAN2 

C    * * 
C    * Input Simulation Limits * 
C  * ♦ 

WRITE(*.1060) 
READ (*.1010) DTH 
WRITEC*,1070) 
READ (*.t080) ITER 
WRITE(*.1090) 
READ (*.1100) YESNO 
IF (YESN0C1:1).EQ.'Y\OR.YESNOU : 1) .EQ. V* THEN 
DEBUG - .TRUE. 

ELSE 
DEBUG - .FALSE. 

ENDIF 
C   * * 
C   * Convert the input angles from deg * 
C   • to rad * 
C   ♦ ♦ 

INC1 • INC1 * DEGRAD 
ARGPA1 • ARGPA1 • DEGRAD 
LONAN1 - LONAN1 * DEGRAD 
INC2 - INC2 • DEGRAD 
ARGPA2 « ARGPA2 • DEGRAD 
L0NAN2 - LONAN2 * DEGRAD 

i C • Clear the two event counters: * 
C • OCA * Obscured Close Approach * 
C   *   CA - Close Approach ♦ 
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OCA - 0 
CA    - 0 

c * * 
C   * Start Simulation     * 
C    *— ——— * 

DO 100 I-l.ITER 
Ml » TiOPI * RANDOM() 
M2 - TiOPI * RANDOM() 
DR - RANGE() 
IF (DEBUG) WRITE (*.1110) Ml, M2, DR 
IF (DR .LE. DTH) THEN 
IF (OBSCURO) THEN 
OCA « OCA ♦ 1 
ELSE 
CA - CA ♦ 1 

ENDIF 
ENDIF 

100  CONTINUE 
iRITE(*,1120) Al. A2. El. E2. INC1*RADDEG. INC2*RADDEG, 

1 ARGPA1*RADDEG. ARGPA2*RADDEG. L0NAN1*RADDEG. 
2 L0NAN2*RADDEG. DTH. ITER. 
3 OCA. DBLE(OCA)/DBLE(ITER). 
4 CA. DBLE(CA)/DBLE(ITER) 

C   *     * 
1000 FORMAT (/' Input the seai-aajor axis of Sat Ml. 

1       ' in km: '\) 
1010 FORMAT (F16.12) 
1020 FORMAT (' Input the eccentricity of Sat Ml.': '\) 
1030 FORMAT C Input the incllnition of Sat Ml. 

1      ' in degrees: '\) 
1040 FORMAT (* Input the argument of perapsis of Sat Ml. 

1       ' in degrees: *\) 
1050 FORMAT (' Input the longitude of the ascending node '. 

1       'of Sat Ml. Mn degrees: '\) 
1060 FORMAT (/' Input distance threshold in ka: '\) 
1070 FORMAT (' Input the desired nuaber of iterations \ 

1        '(7 digits »ax): '\) 
1080 FORMAT (17) 
1090 FORMAT (' Run SSPCA in DEBUG node (Y/N)? \) 
1100 FORMAT (A4) 
1110 FORMAT (/' Ml-\Fl2 10.4X.'M2-\F12.10.4X.'RANGE-'.F12.6) 
1120 FORMAT (/T21. 'Sat l'.T4l.'Sat 2'/Tl6.' '. 

1 T3C* //' a Cks;V.Tl€kFie.lC,4X. 
2 F16.10//' e'.Tl6.Fl6.i0.4X.Fi6.l0// 
3 ' inc (deg) Mi6.F16.lo.4X.Fl6.10// 
4 ' argument ofM16.F16.10.4X.F16.10/' perigee (deg)'// 
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c 
c 
c 
c 
c 

I 

I 

I 

i 

* long of asc\T16,F16.10.4X,F16.10/' node (deg)'/// 
• Distance Threshold for Close Approach: *, 
F16.10.' km'/// 
T48,'FractionV' Iterations M7.T46/ *// 
'  Close',T14,17,'—Obscured by the Earth—\F12.10/ 
' Approaches 7T14.17, * Unobscured \ 
F12.10//) 

END 
 * 

Function OBSCURO 
* 

OGICAL*4 FUNCTION OBSCURO 

REAL*8 Ml. Al. El. 
REAL*8 M2. A2. E2. 

DR 
HALFPI. PI. TiOPI. DEGRAD. RADDEG 
Ml, Al. El. INC1, NU1. ARGPA1. L0NAN1. XI 

INC2. NU2, ARGPA2. L0NAN2. X2 
—--——* 

XK3)*DZ ) 

LOGICAL*4 DEBUG 
INTEGER*4 I. J. K 
REAL*8 NDRANG. DX. DY. DZ. DR, ODTH. RADICAL 

INC1. NU1. ARGPA1. LONAN1. XI(4) 
INC2. NU2. ARGPA2. L0NAN2. X2C4) 

REAL*8 HALFPI.PI.TiOPI.DEGRAD.RADDEG 
REAL*S ER. DU. TU 
COMMON /ADMIN/ DEBUG 
COMMON /ASTRO/ ER. DU. TU 
COMMON /COMPAR/ DX. DY. DZ. 
COMMON /CONST/ 
COMMON /SAU/ 
COMMON /SAT2/  M2. A2. E2. 
*-—————————————— 

NDRANG - -1D0 * < X1(1)*DX ♦ HlW-ui 
NDRANG - NDRANG / Xl(4) / DÜ 
IF (DABS(NDRANG) .GT. 1D0) NDRANG - DSIGNC 1DO. NDRANG) 
NDRANG - DACQSCNDHANC) 
IF (DEBUG) VRIfEO.lOOO) NDRANC'RADDEG 
IF (NDRANG.GT.HALFPI .OR. Xt<4)*DSIN(NDRANG).GE.ER) THEN 
OBSCUR ■ .FALSE. 
ELSE 
ODTH » XI(4) * DCOS(NDRANG) 
RADI L « ODTH ♦ ODTH - XI(4)»XI (4) ♦ ER»ER 
IF (KADICAL GE. 0D0) THEN 
ODTH - ODTH - DSQRT(RADICAL) 
ELSE 
IF ( DSQRTC DABS(RADICAL) ) 
WRITE (vI0!0) ODTH. 

1    -1D0 • DSQRT(-RADICAL) 
ENDIF 

ENDIF 

GT. 5D-11 ) THEN 

i 
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c 
c 
c 

c 
c 
c 

c 
c 
c 

1 
IF (DEBUG) WRITE (*,1020) DR, ODTH. 
DSIGNCDSQRT(DABS(RADICAL)).RADICAL) 

1000 

1010 

1020 

C 
C 
C 
C 
C 

IF ( DR .GT. ODTH) THEN 
OBSCUR - .TRUE. 
ELSE 
OBSCUR « .FALSE. 
ENDIF 

ENDIF 
RETURN 
FORMAT (//' The Nadir Angle from Sat 1 to Sat 2 *, 

1 'is (deg):\F16.10) 
FORMAT (//' Error! Negative Radical. ODTH-\F16.10. 

2 4X. 'RADICAL«'. 1P.D12.5.0P) 
FORMAT (//' DR«\F16.10.4X.'ODTH«'.F16.10.4X.'RADICAL- 

3 1P.D12.5.0P) 
END 

REAL*8 FUNCTION RANGEO 
* «—™- .—————* 

LOGICAL*4 DEBUG 
INTEGER*4 I. J. K 
REAL*8 NU. XP(3). R(3.2). DX. DY. DZ. DR 
REAL*8 Ml. Al. El. INC1, NU1. ARGPA1. LONANl. XI(4) 
REAL*8 M2. A2. E2. INC2. NU2. ARGPA2. L0NAN2. X2(4) 
REAL*8 HALFPI.PI.TiOPI.DEGRAD.RADDEG 
REAL*8 ER. DU. TU 
COMMON /ADMIN/ DEBUG 
COMMON /ASTRO/ ER. DU. TU 
COMMON /COMPAR/ DX. DY. DZ. DR 
COMMON /CONST/ HALFPI. PI. TWOPI. DEGRAD. RADDEG 

Ml. Al. El. 
M2. A2, E2. 

COMMON /SAT1/ 
COMMON /SAT2/ 

INC1. NU1. ARGPA1. LONANl. XI 
INC2. NU2. ARGPA2. L0NAN2. X2 

•   Compute True Anomaly i of Sat 1 

NU1 - NU( Ml. El) 

•   Compute the Radius of Sat 1 

CIDO - EI^ED / CIDO ♦ El» 

• Compute the pos 
• Perifocal Cc 

ution of 
»ordlnate 

Sat 1 in 
Frame 

DCOSCWD) 
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C 
c 
c 
c 
c 
c 
c 

c 
c 
c 
c 

c 
c 
c 

c 
c 
c 

c 
c 
c 
c 

c 
c 
c 

X1(4)*DC0S(NU1) 
Xl(4)*DSIM(iül) 
ODO 

*——. 

XPO> 
XPC2) 
XP(3) 
*--.-—-———-——-—---—-———* 

Compute the elements of the * 
transformation matrix to transform * 
from the Perifocal Coordinate * 
Frame to the Geocentric Equatorial * 

* Frame. * 
*.——————-— ———* 

RU.l) - DCOS(LONANl)*DCOS(ARCPAD- 
1 DSIN(L0NAM1)*DSIN(ARGPA1)*DC0S(IMC1) 
RC1.2) - - DCOS(LORAIIl)*DSIN(ARGPAi)  - 

1 DSIN(LO»ANl)*DCOS(ARGPAi)*DCOS(INCl) 
R(2.1) - DSIM(LOHANl)«DCOS(ARGPAi>* 

1 DCOS(LO»ANi>*DSIN(ARGPAl)*DCOS(INCl) 
R<2.2) - - DSIN(LOMAIIi>*DSIM<ARGPAl>* 

l DC0S(L0MA»1)*DC0S(ARGPA1)*DC0S(IMC1) 
RC3.1) - DSIN(ARGPA1)»DSIM(IIIC1) 
RC3.2) • DC0S(ARGPA1)*DSINCI»C1) 
IF (DEBUG)  KRITE(VlOOO)   <(R(I. J). J«l .2). I»l .3) 
*.. ....—.„.....—......—.......* 

* Compute the position of Sat 1 in 
* the Geocentric Equatorial Frame. 
*...w — ...... .—• — . — — .— ......, 

Xl(l) « R(i.i)*XPCI) ♦ RU.2)*XP<2> 
XI(2) • R<2.1>XPU> ♦ R(2.2)»XP(2) 
XI(3) - R(3.1)*XP<1) ♦ R(3.2>*XPC2> 

* 

Compute the True Anomaly of Sat 2 

1U2 • NUC M2, E2) 

Compute the Radius of Sat 2 

X2(4) « A2 • ODO - E2*E2) / (!DO ♦ E2 

Compute the position of Sat i in 
Perifocal Coordinate Frame 

DC0S(MU2)> 

XP(!) - X2<4)-DCOS(»IU2) 
XP(2) • X2C4>^DSINCVU2> 
XP(3^ - ODO 

• Compute the elements of the      • 
• transformation matrix to transform • 
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C * from the Perlfocal Coordinate    * 
C * Frame to the Geocentric Equatorial * 
C * Frame. * 
Q * * 

R(l.l) « DC0S(L0NAN2)*DC0S(ARGPA2)- 
1 DSIN (L0NAN2) *DSIN (ARGPA2) *DCQS(INC2) 
RC1.2) - - DCGS(L0NAN2)*DSIN(ARGPA2) - 

1 DSIN(L0NAN2)*DCOS(ARGPA2)*DCOS(IMC2) 
R(2,l) - DSIN(L0NAN2)*DC0S(ARGPA2)* 

1 DCQS(L0NAN2)*DSIN(ARGPA2)*DCOS(INC2) 
RC2.2) - - DSIN(L0NAN2)*DSIN(ARGPA2)* 

1 DC0S(L0NAN2)*DCQS(ARGPA2)*DCGS(INC2) 
RC3.1) - DSIN(ARGPA2)*DSIN(INC2) 
RC3.2) « DC0S(ARGPA2)*DSIN(INC2) 
IF (DEBUG) WRITE(*.1010) CCRCI.J).J-l.2).1-1.3) 

c   * * 

C * Compute the position of Sat 2 in * 
C * the Geocentric Equatorial Frame. * 
C   *— - * 

X2<1) • R(1.1)*XP(1) ♦ R(1.2)*XP(2) 
X2(2) - R(2.1)*XPC1) ♦ R(2.2)*XP(2) 
X2(3) « R(3.1)*XP(1) ♦ R(3.2)*XP(2) 
DX « X2(l) - Xl(l) 
DY » X2(2) - XI (2) 
DZ • X2(3) - XI(3) 
DR «    DSQRTCDX*DX ♦ DY*DY ♦DZ*DZ) 
IF (DEBUG) THEN 
VRITE(*.l020) NUi*RADDEG. NU2*RADDEG 
WRITE(*.1030) (X2(I).I»l.4).(XI(I).1-1.4). 

1 DX. DY. DZ. DR 
ENDIF 
RANGE - DR 
RETURN 

1000 FORMAT (///' Sat 1 R-matrix to transform from Perlfocal 
1 'to Geocentric Equatorial Frame.'/// 
2 (' •.F15.12.4X.F15.12)//) 

1010   FOP"V#T (///' Sat 2 R-matrix to transform from Perlfocal 
1 'to Geocentric Equatorial Frame.*/// 
2 C   I.F15.12.4X.F15.12)//) 

1020 FORMAT (• Sat 1 True Anomaly: '.F16.10.4X. 
1       * Sat 2 True Anomaly: a.F16.10/> 

1030 FORMAT C/T16.'X1.T34.'Y'.T52.'Z'.T66.'Magnitude'/ 
1 T9.'  \ 
2 ' / 
3 ' Sat 2: \F16.9.2X,F16.9.2X.F16.9.2X,Fi6.9// 
4 ' Sat 1: \F16.9.2X.F16.9.2X.F16.9.2X.F16.9/ 
5 T9.'  '. 
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6 • 7 
7 * Delta:   \F16.9,2X,F16.9,2X,F16.9,2X,F16.9//) 

END 

C * * 
C * Function NÜ * 
C * * 

REAL*8 FUNCTION NUC M, E ) 
REAL*8 M. E 

LOCICAL*4 DEBUG 
INTEGERS I. J. K 
REAL*8 EANOM. EANOM1, EANDOT. ERROR 
REAL*8 HALFPI,PI.TWOPI.DEGRAD.RADDEG 
REAL*8 ER, DU. TU 
COMMON /ADMIN/ DEBUG 
COMMON /ASTRO/ ER, DU. TU 
COMMON /CONST/ HALFPI, PI. TWOPI. DEGRAD. RADDEG 

c   ♦ ♦ 

IF < E .EG. ODO > THEN 
NU - M 
IF CDEBUG) WRITE C*.1000) NU 
RETURN 

END IF 
EANOM ■ M 
IF (DEBUG) iRITE C*,1100) M. E, EANOM 
I - 0 

100  EAN0M1 - EANOM 
I - I ♦ 1 
EANDOT « 1D0 - E * DCQSCEANQM1) 
EANOM - EAN0M1 ♦ CM - EANOM! ♦ E*SIN<EAN0M1>>/EANDOT 
ERROR - DABSCCEAN0M1 - EANOM)/EANOM1) 
IF CDEBUG) WRITE C*,1200) I, EANOM!. EANOM. EANDOT. ERROR 
IF CERROR .CT. 5D-11) GOTO 100 
NU - 2D0 * DATANC DSQRTCC1DO ♦ D/C1D0 - D) ♦ 

1 DTANC5D-1 * EANOM)) 
IF CNU.LT.O) NU - TWOPI ♦ NU 
RETURN 

1000 FORMAT C/' This is a circular orbit, so NU - M. NU«1. 
1      F12.10) 

1100 FORMAT C//T4.'Mean1.T35.'Eccentric7 
1 T3.'Anomaly',T18.»Eccentricity•,T36.'Anomally7 
2 T2.1 7 
3 IX.3CF12.10. 4X)/// 
4 T18. 'Old' .T35. 'New7Tl6, 'Eccentric' .T33. 'Eccentric 7 
5 ' Iteration'.T17.'Anomaly'.T34.»Anomaly\T50.'dM/dE'. 
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6   T66,'ErTorV'  
17    • ') 

1200    FORMAT (2X.  17, 5X,  F12.10, 4X,  F12.10, 4X,  IP, D12.5, 4X, 
1      D12.5. OP) 

- END i 
i 
i 
i 
i 

i 
i 
i 
i 
i 
i 
i 
i 
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include <stdlo.h> 

mdlnl - this routine initializes the random number 
generator. 

-*/ 
*/ 
*/ 
*/ 
*/ 
-*/ 

rndiniO 

srand(1); 

random - this routine returns a double precision 
uniform distributed random variable between 
0 and 1. 

d< 
{ 
uble »random0 

int rand(); 
double r; 
r ■ randO; 
r *« 32768,0; 
r ♦« randO ; 
r /■ 32768.0 * 
return (&r); 

32768.0; 

i 
90 



I 
I 
I 

c- 
c 
c 
c 
c- 

I 
I 
a 
i 

i 
i 
i 
i c 

c 
c 

I 
I 
I 
I 

c 
c 

CGPCA - Circular Orbit Probability of Close Approach 

-C 
C 
c 
c 

PROGRAM COPCA 
CHARACTER YESNO*4 
LOGICAL*4 DEBUG 
INTEGER*4 ONE, TWO 
REAL*8 Mi. Al, El, IMC1, IU1. ARGPA1. LONAN1. XI(4) 
REAL*8 M2. A2, E2. INC2, NU2, ARGPA2. L0NAN2. X2(4) 
REAL*8 ANGDTH. APCA, A2PCA, APXPCA. CADTH 
REAU8 DTH, IICR 
REAL*8 M, OPSEP, PCA. PDCA 
REAL*8 PDCAMi, PDCAM2. PDCAM3. SADTH. STHETA. THETA 
REAL*8 HALFPI.PI.TWOPI,DEGRAD,RADDEG 
REAL*8 ER. DU, TU 

DEBUG 
ER. DU. TU 
HALFPI. PI. TWOPI, DEGRAD. RADDEG 
Ml. Al. El. INC1. NU1. ARGPA1. LONAN1. XI 
M2. A2. E2. IMC2. NU2. ARGPA2. L0NAN2. X2 
SADTH. CADTH. STHETA 

COMMON /ADMIN/ 
COMMON /ASTRO/ 
COMMON /CONST/ 
COMMON /SAT1/ 
COMMON /SAT2/ 
COMMON /TRANS/ 
PARAMETER (ONE«l. TWO-2) 
ER - 6378.145D0 
DU - 6378.145D0 
TU - 806,8118744D0 
PI-DACOS(-IDO) 
HALFPI-PI/2D0 
TW0PI-2D0*PI 
DEGRAD-PI/180D0 
RADDEG-180D0/PI 
*—— ..... ...... ———..* 

* Input Orbital Elements of Sat 1   * 
♦-————— .-...———.....—* 

WRITE ( 
READ ( 
WRITEC 
READ ( 
WRITEC 
READ ( 
WRITEC 
READ C 
WRITEC 
READ C 

.1000) ONE 

.1010) Al 

.1020) ONE 

.1010) El 

.1030) ONE 

.1010) INC1 

.1040) ONE 

.1010) ARGPA1 

.1050) ONE 

.1010) LONAN1 

* Input Orbital Eleaents of Sat 2 
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WRITE(*.i000) TWO 
READ (*.1010) A2 
WRITE<*.1020) TWO 
READ <*,1010) E2 
WRITE<*.1030) TWO 
READ (*.1010) INC2 
WRITE<*,1040) TWO 
READ C*.1010) ARGPA2 
WRITE(*,1050) TWO 
READ (*.1010) L0HAW2 

C   *——.—. — * 
C   * Inout Simulation Units        * 
Q        ♦ 1 * 

WRITE<*.1060) 
READ C*,1010> DTH 
WRITE(*.1070) 
READ (*.1080) ITER 
IWCR ■ TWOPI / DBLECITER) 
WRITE(*.1090) 
READ C*.U00) YESWO 
IF (YESWOarD.EQ.'YVOR.YESMOUiD.EQ.V) THEK 
DEBUG - .TRUE. 
ELSE 
DEBUG • .FALSE. 

END IF 
c   , ♦ 

C   * Convert the input angles fro» deg * 
C   * to rad * 
c   * ♦ 

IWCi » IVCl * DEGRAD 
ARGPA1 ■ ARGPA1 ♦ DEGRAD 
LOWAW1 - LOWAW1 * DEGRAD 
IMC2 - IMC2 * DEGRAD 
ARGPA2 - ARGPA2 * DEGRAD 
L0NAW2 - LQSAM2 * DEGRAD 

c   *  

C   * Initialize Probability of Close 
C   * Approach 
C   *  

PCA - 0D0 
C  ♦  
C   * Coipute Angular Separation Between 
C   * The Orbital Planes of Sat 1 and 
C   * Sat 2 
C  ♦  

THETA - OPSEPO 
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STHETA ■ DSIH(THETA) 
C   *—————————————* 
C   * Conpute Angular Distance Threshold * 
Q      *——.—«———-—————————* 

ANGDTH • (A1*A1 ♦ A2*A2 - DTH*DTH)/(2D0*A1*A2) 
IF (DABS(ANCDTH) .GT. 1D0) THEM 
IF (AMGDTH .IT. -1DO) THEN 
AMGDTH - PI 
ELSE 
AMGDTH • ODO 
EMDIF 

ELSE 
AMGDTH - DACOS(AMGDTH) 
EMDIF 
SADTH » DSIM(AMGDTH) 
GADTH - DCOS(AMGDTH) 

C   ♦ ♦ 

C   * Conpute Approximate Probability of * 
C   * Close Approach (Using Both Methods)* 
c   ♦ ♦ 

APCA • APXPCA(AMGDTH) 

C   ♦ Start Numerical Integration     * 
c   ♦ ♦ 

IF (AMGDTH .GE. THETA) THEM 
M2 • HALFPI 
ELSE 
M2 - DASIM(SADTH / STHETA) 

EMDIF 
Ml - -M2 
IF (DEBUG) THEN 
IRITE<*.niO) Ml. N2 
M2 • Ml ♦ 1D1 • IMCR 
EMDIF 
M » Ml 

c   ♦  

C * Adjust step size to sake the 
C * Integration range an Integer 
C * number of step size's. 
C ♦  

IF ( N2 .GT. Ml) IMCR - (M2-M1)/DBLE(IDNINT((M2-N1)/INCR)) 
M2 - M2 - INCR/2D0 
PDCAN1 • PDCA(M) 

100  PDCAM2 - PDCA(M*.5D0*INCR) 
PDCAM3 « PDCA(M*INCR) 
PCA - PCA ♦ INCR/6D0 ♦ (PDCAM1 ♦ 4D0«PDCAM2 ♦ PDCAM3) 
IF (DEBUG) VRITE(*.U20) M. PDCAM!. PDCAM2. PDCAM3. PCA 
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PDCAM1 « PDCAM3 
M - M ♦ INCR 
IF CM .LE. M2) GOTO 100 
PCA - 2DO * PCA 
WRITE(*,1130) Al. A2. Fl. E2, IMC1*RADDEG. I»C2*RADDEG. 

1 ARGPA1*RADDEG. ARGPA2*RADDEG. L0NAN1*RADDEG. 
2 L0NAN2*RADDEG. IMCR*1D6. DTH, ANGDTH*RADDEG, 
3 THETA*RADDEG. APCA. PCA 

c   ♦ ♦ 

1000 FORMAT (/' Input the semi-major axis of Sat Ml. 
1      • in km: >\) 

1010 FORMAT (F16.12) 
1020 FORMAT (' Input the eccentricity of Sat Ml.': *\) 
1030 FORMAT (• Input the inclinition of Sat Ml. 

1      * in degrees: *\) 
1040 FORMAT (' Input the argument of perapsls of Sat Ml. 

1       ' in degrees: *\) 
1050 FORMAT (' Input the longitude of the ascending node '. 

1       'of Sat Ml. Mn degrees: '\> 
1060 FORMAT (/' Input distance threshold in km: '\) 
1070 FORMAT (' Input the desired number of iterations per radian 

1       '(7 digits max): '\> 
1080 FORMAT (17) 
1090 FORMAT C Run COPCA in DEBUG mode (Y/N)? '\) 
1100 FORMAT (A4) 
1110 FORMAT (//' M1«,.F13.10.4X.,M2*,.F13.10/) 
1120 FORMAT C  M-\F16.10/» PDGAM-'.F16.10/' PDGAM2-\F16 10/ 

1  ' PDCAMS-'.Fie.iO/1 PCA  «'.116.10///) 
1130 FORMAT (/T21. 'Sat i'.TIl.'Sat 2VT16/ \ 

1 T36.1 '//• a (km),.T16.F16.10.4X. 
2 F16.10//' #•.Ti6.Fl6.10.4X.F16.tO// 
3 ' inc (deg)\T16.F16.10.4X.F16.10// 
4 ' argument of *.T16.F16.10.4X.F16.10/* perigee (deg)•// 
5 ' long of ascM16.F16.10.4X.F16.10/1 node (deg)1/// 
6 ' Mean Anomaly Iteration Step Size 
7 F16.10.' micro-radians*// 
8 ' Distance Threshold for Close Approach: 
9 F16.10.• km1// 
A ' Angular Threshold for Close Approach 
B F16.10.1 deg'// 
C ' Angular Separation of Orbital Planes 
D F16-10.' degV/ 
E * Approximate Probability of Close Approach: \ 
F F9 6// 
G * Computed Probability of Close Approach  : \F9.6//) 
END 

C    ♦ ♦ 
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* 
Function OPSEPO 

L0NAN1. XI(4) 
LQNAN2. X2C4) 

*-..—.———-—.-......—— . * 

REAL*8 FÜMCTI0N OPSEP 
* * 

LOGICAL*4 DEBUG 
REAL*8 DLONAN. THETA 
REAL*8 Ml. Al, El. INC1. NU1. ARGPA1. 
REALMS M2, A2. E2. INC2. MU2, ARGPA2. 
REAL*8 HALFPI.PI.TWOPI.DEGRAD.RADDEG 
REAL*8 ER, DU, TU 

DEBUG 
ER. DU. TU 
HALFPI. PI. TWOPI. DEGRAD. RADDEG 
Kl. Al. El. INC1. MU1. ARGPA1. LONAN1, XI 
N2. A2. E2. INC2. IÜ2. ARGPA2. LONAN2, X2 

—...—...™..—..... —...—* 

LGHAN2 - LONAN1 

COMMON /ADMIN/ 
COMMON /ASTRO/ 
COMMON /CONST/ 
COMMON /SAT1/ 
COMMON /SAT2/ 

DLONAN 
IF (DABSCDLONAN) .GT. PI) 

1  DLONAN - DLONAN - DSIGN(TWOPI.DLONAN) 
THETA » DAC0S(DC0S(INC1)*DC0SCINC2) 

1  ♦ DSIN(INC1)*DSIN(INC2)*DC0S(DL0NAN)) 
IF (THETA .GT. HALFPI) THETA • PI - THETA 
OPSEP ■ THETA 
RETURN 
END 

.............. .—...... ...—........* 

Function PDCAO        • 

REAL*8 FUNCTION PDCA(M) 
♦...............—..—..—....—......* 

LOCICAL*4 DEBUG 
REAL*8 ARG. N. SM. STHETA, SADTH. CADTH 
REAL*8 Ml. Al. El. INC1. NU1. ARGPA1. LONAI1. XI(4) 
REAL*8 N2. A2. E2. INC2. NU2. ARGPA2. LONAN2. X2C4) 
REAL'S HALFPI.PI.TWOPI.DEGRAD.RADDEG 
REAL*8 ER. DU. TU 

DEBUG 
ER. DU. TU 
HALFPI. PI. TWOPI. DEGRAD. RADDEG 
Ml. Al. El. INC1. NU1. ARGPA1. LONAN1. 
N2. A2. E2. IIC2. NU2. ARGPA2. LÖNAN2, 
SADTH. CADTH. STHETA 

COMMON /ADMIN/ 
COMMON /ASTRO/ 
COMMON /CONST/ 
COMMON /SAT1/ 
COMMON /SAT2/ 
COMMON /TRANS/ 

XI 
X2 
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SN - DSINC M ) 
ARG » 1D0 - STHETA'STHETA * SM*SM 
IF (ARG .EG. ODO) THEN 

IF (CADTH .GE. ODO) THEM 
PDCA - ODO 
RETURN 
&L5E 
PDCA « 5D-1 
RETURN 

ENDIF 
ENDIF 
ARG - CADTH / 
IF CDA6SCARG) 
IF (ARG .GT. 
PDCA - ODO 
RETURN 

ELSE 
PDCA » 5D-1 
RETURN 

ENDIF 
ENDIF 
PDCA » DAC0S(ARG)/(2D0 ♦ PI * PI) 
RETURN 
END 

/ /I 

DSQRT(ARG) 
.GT. 1DO) THEN 
1DO) THEN 

/ PI 

REAL'S FUNCTION APXPCA(ANCDTH) 
REAL'S ANGDTH 
+..•...„.—..—..—..........-.-.....« 

LOGICAL*« DEBUG 
REAL'S STHETA. SADTH. CADTH 
REAL'S Nl. Al< El. INC!, NUl. AÄGPA1. LONANl. XI(4) 
REAL'S «2. A2. E2. INC2. NU2. ARSPA2. LQNAN2. X2(*) 
REAL'S HALF?I. PI .TiOPI. DECRAD. RADDEC 
REAL'S ER. DU. TU 
COMMON /ADMIN/ DEBUG 

ER. W.  TU 
ULPPI. PI. TWPI. DEGRAD RADDEG 
Mi. Al. El. INC1. NUl. ARCPA1. LONANl. Xi 
N2. A2. E2. INC2. NU2. ARCPA2. LONAN2. X2 
SADTH. CADTH. STHETA 

COMMON /ASTRO/ 
COMMON /CONST/ 
COMMON /SATS/ 
COMMON /SAT2/ 
COMMON /TRAK3/ 

IF (STHETA .LT. 1D-1) THEN 
APXPCA • -1DO 

$6 



ELSE 
APXPCA - AMGDTH * AMGDTH / C2D0 * PI ♦ STHETA) 
IF (APXPCA .GT. 1D0) APXPCA » -1DO 

EMDIF 
RETURN 
END 
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c c 

c c 
C  BOPCA - Elliptical Orbit Probability of Clot« Approach   C 
C C 

PROGRAM EOPCA 
CHARACTER YESMO»4 
LOGICAL»4 DEBUG 
IITEGER*4 ONE. TWO 
REAL*8 M 
REAL*8 BOUMD1. B0UVD2. DTH. DSQR, PDTH. PR. IU11. IÜ12. 

1 «U21. IU22 
REAL*8 Ml. Al. El. IIC1. IU1. ARCPA1. LOMAM1. XI(4) 
REAL*8 K2. A2. £2. IIC2. KU2. ARCPA2. LORAI2. X2C4) 
REALMS SIMC1. CIMCl. SMU1. CMÜ1. SARGP1. CARCP!. 

1 SUAI1. CLMAI1. BETA! 
REALMS SIIC2. CIMC2. SIU2. C»U2, SARGP2. CARGP2. 

1 SIMAM2, CLVAN2. BETA2 
REAL*8 Rll. R12. R13. R2i. R22. R23. R31. R32. R33 
REALMS $11, S12. S13. S21. S22. S23. S31. S32. S33 
REAl*8 APCA 
REAL*8 IVOR. LIMIT. »U 
REAL*8 PCA. PDCA 
REAL*8 PDCAN1. PDCAN2. PDCAN3 
REAL*8 HALFPI.PI.TIIOPI.DEGRAD.RADDEG 
REAL*8 ER. DU. TU 
CONHO» /ADNI*/ DEBUG 
OONNOM /ASTRO/ ER. DU. TU 
COMKOir /BOUMD/ BOUHD1. BOUHD2. DTH. DSQR. PDTH. PR. «Uli« 

1   «U12. «U21. VU22 
CONNOtf /CO«ST/ HALFPI. PI. TVOPI. DEGRAD. RADDEC 
OOmOV /SAT!/  Ml. Al. El. IKC1. IUI. ARCPA1. LOK AMI. XI. 

1 SIVC1. CHCi. SIIU1. CVUl. SARGPl. CARCP 1. 
2 SIJAII1. CLttAll. BETA1 
CQMMO* /SAT2/  N2. A2. E2. IK2. IU2. ARGPA2. LQHAH2. X2. 

1 SIXC2. CIHC2. SXU2. CKU2. SARCP2. CARCP2. 
2 SLMAN2. CUAV2. BETA2 
CONNO* /TRAMS/ Rll. R12. R13. R21. R22. R23. R31. R32. 

1 R33. SU. S22. S13. S21. S22. S23. S31. S32. S33 
PARAMETER (0*E-l. TOW) 
ER • 6378.145D0 
DU • 6378.145D0 
TU • 806.8118744DO 
PI • DAXSC-JDC: 
HALFPI » PI/2D0 
TfQPI ■ 2DÖ-PI 
DECRAD - PI/180D0 
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c 
c 
c 

RADDEG « 180D0/PI 
«L.  .——* T> — - 

* Input 
■J  

: Orbital Elements of Sat 1 

.——^ 

* 
_ _ _ ^ 

WRITEC* 1000) ONE 
__«.^t, 

READ (* 1010) Al 
WRITEC* 1020) ONE 
READ C* 1010) El 
WRITEC* 1030) ONE 
READ C* 1010) INCI 
WRITEC* 1040) ONE 
READ C* 1010) ARGPA1 
WRITEC* 1050) ONE 

c 
c 
c 

READ C* 1010) LONAN1 
-—->* »  

* Input Orbital Elements of Sat 2 * 
. —— * » —- 

WRITEC* 1000) TWO 
. —— ^ 

READ C* 1010) A2 
WRITEC* 1020) TWO 
READ C* 1010) E2 
WRITEC* 1030) TWO 
READ C* 1010) INC2 
WRITEC* 1040) TWO 
READ C* ,1010) ARGPA2 
WRITEC* ,1050) TWO 

c 
c 
c 

READ C* 
A_______ 

,1010) L0NAN2 
»»»A ^ ___._—_—.__—,__  

* Input Simulation Limits ; 

WRITEC* 1060) 
■**•"" V 

READ C* ,1010) DTH 
WRITEC» ,1070) 
READ C* ,1080) ITER 
INCR « TWOPI < f  DBLECITER) 
WRITEC* .1090) 
READ C* .1100) YESNO 
IF CYESNOUiD.EQ.'YVOR.YESNOCl:!) .EQ.'y') THEN 
DEBUG - .TRUE. 

ELSE 
DEBUG - .FALSE. 

c 
c 

ENDIF 
_——* ^——————————————————————  

* Convert the input angles from dei 
c 
c 

* to rad * 

v—————— 

INCI • : [NCI * DEGRAD 
w 
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ARGPA1 - ARGPA1 * DEGRAD 
L0NAN1 - LONAN1 * DEGRAD 
INC2 - INC2 * DEGRAD 
ARGPA2 » ARGPA2 * DEGRAD 
L0NAN2 « L0NAN2 * DEGRAD 

C * Compute the elements of the * 
C * transformation matrix to transform * 
C * from the Perifocal Coordinate * 
C * Frame to the Geocentric Equatorial * 
C   * Frame. * 
C   * -* 

SARGP1 « DSINCARGPA1) 
CARGP1 - DCOS(ARGPAl) 
SINC1  « DSIN(INCl) 
CINC1  - DCOSCINC1) 
SLNAN1 - DSIN(LONANl) 
CLNAN1 - DCOSCLONAN1) 
BETA1  - DSQRT((1D0-E1)/(1D0*E1» 

c   *  * 

Rll - CLNAN1*CARGP1-SLNAN1*SARGP1*CINC1 
R12 ■ -CLNAN1*SARGP1-SLNAN1*CARGP1*CINC1 
R13 - 0D0 
R21 - SLNM1*CARGP1*CLNAN1*SARGP1*CINC1 
R22 - -SLNAN1*SARGP1*CLNAN1*CARGP1*CINC1 
R23 - 0D0 
R31 • SARGP1*SINC1 
R32 - CARGP1*SINC1 
R33 - 0D0 
IF (DEBUG) IRITE<*.1110) BETA1,R11.R12.R21.R22.R31.R32 

C * Compute the elements of the      * 
C * transformation matrix to transform * 
C * from the Perifocal Coordinate    * 
C * Frame to the Geocentric Equatorial * 
C   * Frame. * 
c   * ♦ 

SARGP2 - DSIIYCARGPA2) 
CARGP2 - DC0SCARGPA2) 
SIMC2  - DSIKCINC2) 
CINC2  • DCQSCINC2) 
SLNAN2 - DSINCL0NAN2) 
CLNAN2 • DC0SCL0NAH2) 
BETA2  - D5QRTC<1D0-E2)/C1D0*E2>) 

C  ♦ * 
511 - CUAN2*CARGP2-SLKAII2*SARGP2«CINC2 
512 - SLNAN2*CARGP2*CUAN2*SARGP2*CINC2 
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SI3 « SARGP2*SINC2 
521 - -CLNAN2*SARGP2-SLNAN2*CARGP2*CINC2 
522 » -SLNAN2*SARGP2*CLNAN2*CARGP2*CINC2 
523 « CARGP2*SINC2 
S3! - SLNAN2*SINC2 
532 » -CLNAN2*SINC2 
533 « CINC2 
IF (DEBUG) WRITER, 1120) BETA2.S11, S12, S13, S21, S22, 

1  S23, S31, S32, S33 
c   * * 

C   * Initialize Probability of Close   * 
C   * Approach * 
C   *  * 

PCA « 0D0 
c   * * 

C   * Start Numerical Integration      * 

NU - -PI 
LIMIT »PI - INCR/2D0 
PDCAM1 - PDCA(NU) 

100  PDCAM2 « PDCA(NU+.5D0*INCR) 
PDCAM3 ■ PDCA(NU*INCR) 
PCA - PCA ♦ INCR/6D0 * (PDCAM1 ♦ 4D0*PDCAM2 ♦ PDCAN3) 
NU • NU ♦ INCR 
IF (DEBUG) WRITE(*.H30) NU, PDCAM1. PDCAM2. PDCAM3. PCA 
PDCAM1 « PDCAM3 
DEBUG - .FALSE. 
IF (NU .LT. LIMIT) GOTO 100 
WRITER.1140) Al. A2. El. E2. INC1*RADDEG. INC2*RADDEG. 

1 ARGPA1*RADDEG. ARCPA2*RADDEC. L0NAN1*RADDEG. 
2 L0NAN2*RADDEG. INCR*1D6. DTK. PCA 

c   ♦ * 

1000 FORMAT (/' Input the semi-major axis of Sat ',11, 
1      ' in km: »\) 

1010 FORMAT (F16.12) 
1020 FORMAT (' Input the eccentricity of Sat Mi,': *\) 
1030 FORMAT C Input the inclinition of Sat Ml, 

1      * in degrees: '\) 
1040 FORMAT (' Input the argument of perapsls of Sat Ml, 

1       • in degrees: *\) 
1050 FORMAT (' Input the longitude of the ascending node *. 

1       'of Sat Ml/ in degrees: *\) 
1060 FORMAT (/' Input distance threshold in km: *\) 
1070 FORMAT C  Inout the desired number of iterations per 

1      'radian (7 digits max): *\) 
1080 FORMAT (17) 
1090 FORMAT C Run EOPCA in DEBUG mode (Y/N)? '\) 
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1100 
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1130 

I 1140 
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FORMAT (A4) 
FORMAT (///' Betal - \F15.12// 

1 • Sat 1 R-matrlx to transform from Perifocal to ', 
2 * Geocentric Equatorial Frame.'// 
3 C   \F15.12,4X.F15.12,4X,' 0.0»)/) 
FORMAT (//' Beta2 - '.F15.12// 

1 ' Sat 2 S-matrix to transform from Geocentric ', 
2 »Equatorial Frame to Sat 2"s Perifocal Frame.'// 
3 (' \F15.12,4X,F15.12,4X.F15.12)/) 
FORMAT (' NU   «\F16.10/' PDCAM1»'.F16.10/' PDCAM2«', 

1    F16.10/' PDCAM3-\F16.10/' PCA     «'.F16.10///) 
FORMAT (/T21,'Sat 1' ,T41, »Sat 2VT16.'  

1 T36,' »//' a <km)\T16.F16.10,4X, 
2 F16.10//' e\T16.F16.10,4X.F16.10// 
3 ' inc (deg)\T16.F16.10,4X.F16.10// 
4 • argument of' .T16.F16.10.4X.F16. 1C/* perigee (deg)V/ 
5 • long of asc\T16,F16.10,4X,F16.10/' node (deg)'/// 
6 " True Anomaly Iteration Step Size    : ■, 
7 F16.10,• micro-radians1// 
8 ' Distance Threshold for Close Approach: \ 
9 F16.10.' km'// 
A  ' Computed Probability of Close Approach  : \F9.6//) 
END 
*  

* 

C   *      Subroutine ORBBND 
C   * 
C  *  

SUBROUTINE ORBBND() 
C  * * 

LOGICAL*4 DEBUG. INSIDE 
INTEGERS I. N. NORDER 
REAL*8 A. B. C. D. E. F. C. H. K. SAT2P 
REAL*8 PI. P2. P3. P4. P5. P(4) 
REAL*8 SOLUTION(4). RANK(4) 
REAL*8 ANGLE. DIST. TEMPI. TEMP2 
REAL*8 NU. X. Y. Z 
REAL*8 BOUND1. B0UND2. DTH. DSQR. PDTH. PR. NU11. NU12. 

1 NU21. NU22 
REAL*8 Ml. Al. El. INC1. NU1. ARGPA1. LONAN1. XI(4). 

1 SINC1. CINC1. SNU1. CNU1. SARGP1. CARGP1. 
2 SLNAN1. CLNAN1. BETAI 
REAL*8 M2. A2. E2. INC2, NU2. ARGPA2. LONAN2. X2(4). 

1 SINC2. CINC2. SNU2. CNU2. SARGP2. CARGP2. 
2 SLNAN2. CLNAN2. BETA2 
REAL*8 Rll. R12. R13. R21. R22. R23. R31. R32. R33. 

1 Sll. S12. S13. S21, S22. S23. S31. S32. S33 
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REAL*8 HALFPI,PI,TWOPI,DEGRAD.RADDEG 
REAL*8 ER, DU, TU 
COMPLEX*16 ANSIER(4) 
COMMON /ADMIN/ DEBUG 
COMMON /ASTRO/ ER. DU. TU 
COMMON /BOUND/ BOUND1. B0UND2, DTH, DSQR, PDTH, PR. NU11. 

1   NU12. NU21. NU22 
COMMON /CONST/ HALFPI, PI. TWOPI, DEGRAD. RADDEG 
COMMON /SAT1/  Ml. Al. El, INC1, NU1. ARGPA1, LONAN1. XI. 

1 SINC1. CINC1. SNU1. CNU1. SARGP1, CARGP1. 
2 SLNAN1. CLNAN1, BETA1 
COMMON /SAT2/  M2. A2. E2, INC2, NU2, ARGPA2, L0NAN2, X2, 

1 SINC2, CINC2. SNU2. CNU2. SARGP2. CARGP2. 
2 SLNAN2. CLNAN2. BETA2 
COMMON /TRANS/ Rll. R12. R13, R21, R22. R23, R31, R32, 

1 R33, Sll. S12. S13. S21. S22, S23. S31, S32, S33 

C   * Initialize Arrays to zero       * 
C   * * 

DO 100 1-1.4 
ANSWERCI)-(ODO.ODO) 
PCD-ODO 
RANKCD-ODO 
SOLUTION (I)-0D0 

100  CONTINUE 

C * Find the terms needed to compute * 
C * the polynomial coefficients of the * 
C * polynomial used to find NU11 thru * 
C * NU22. Use 2nd order polynomial * 
C * solution if XI (1) or XI(2) are * 
C   * very small. * 
Q * * 

SAT2P « A2*(1D0 - E?*E2) 
A » E2 * ((DSQR - PR*PR)*E2 ♦ 2D0*X1(1)*SAT2P) 
B - 2D0*((DSQR - PR*PR)*E2 ♦ X1(1)*SAT2P> 
C - DSQR - PR*PR - SAT2P*SAT2P 

K « 4D0*X1(2)*X1(2)*SAT2P*SAT2P 
IF (DEBUG) iRITE(*.900) DSQR. PR. E2. SAT2P. XI(1). A. B. 

1 C. K 

IF (DABS(XK2)).GT.lD-8 .AND. PR,NE.DABS(X1 (!>>> THEN 
PI - A*A ♦ K*E2*E2 
P2 - 2D0*(A*B ♦ K*E2) 
P3 - B*B ♦ 2D0*A*C ♦ K*(1D0-E2*E2> 
P4 « 2D0*(B*C - K*E2) 
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P5 » OC - K 
c      * * 

C      * Divide the polynomial by the     * 
C      * highest order coefficient       * 
C      * * 

NORDER * 0 
IF (P1.NE.0D0) THEN 

c      * * 

C      * The polynomial is 4th order * 
C      * * 

NORDER - 4 
P(l) « P2/P1 
PC2) - P3/P1 
P(3) - P4/P1 
P(4) » P5/P1 
CALL QUARTICC P, ANSWER) 

ELSE IF (P2.NE.0D0) THEN 
Q * ———- ••—* 
C        * The polynomial is 3rd order * 
c        * * 

NORDER - 3 
PCD « P3/P2 
PC2) » P4/P2 
P<3) - P5/P2 
CALL CUBIC( P. ANSWER) 

ELSE IF (P3.NE.0D0) THEN 
C        * * 
C        * The polynomial is 2nd order * 
C        *  * 

NORDER « 2 
P(l) - P4/P3 
P(2) - P5/P3 
CALL QUADRATIC( P. ANSWER) 

ENDIF 
ELSE 

IF (A.NE.ODO) THEN 
NORDER - 4 
PCD » B/A 
PC2) - C/A 
CALL QUADRATIC( P, ANSWER) 
ANSWER (3) - ANSWER (D 
ANSWER(4) - ANSWER(2) 

ELSE 
NORDER - 2 
ANSWER (D ■ -C / B 
ANSWER (2) - ANSWER CD 

ENDIF 
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ENDIF 
IF (DEBUG) THEN 
WRITE(*.1000) NORDER, PI, P2, P3, P4, P5 
DO 200 1-1,4 
WRITE(*,1010) I, P(I), I, DREAL(ANSWERCI)), 

1   DIMAGCANSWER(D) 
200   CONTINUE 

ENDIF 
N - 0 
DO 300 I-l.NORDER 

IF CDIMAG(ANSWER(I)).EQ.0D0) THEN 
IF ((DABS(DREAL(ANSWER(I)))-1D0).LE.1D-10) THEN 

I ■ I ♦ 1 
SOLUTION(N) » DREAL(ANSWERQ)) 
IF (DABS(SOLUTION(N)).GT.lDO) THEN 

IF (SOLUTION(N).GT.ODO) THEN 
SOLUTION(N) - 0D0 

ELSE 
SOLUTION(N) « PI 

ENDIF 
ELSE 

SOLUTION(N) « DACOS(SOLUTION(N)) 
ENDIF 

ENDIF 
ENDIF 

300  CONTINUE 
IF (DEBUG) WRITE(*.1020) N, (I,RADDEC*SOLUTION(I).1»!.N) 
IF (N.GE.2) THEN 
RANK(l) - SOLUTION(l) 
DO 500 1-2.N 
TEMP2 « SOLUTION(I) 
DO 400 J-l.I-1 
IF (TEMP2.LT.RANK(J)) THEN 
TEMPS - RANK(J) 
RANKÜ) - TEMP2 

i 

TEMP2 • TEMPI 
ENDIF 

400 CONTINUE 
RANK(I) « TEMP2 

500 CONTINUE 
ENDIF 

C 
C 

IF (DEBUG) WRITE(*.1030) N. (I.RADDEG*RANK(I),I»1,N) 
^ w m-M w »■>•>■• H wt «■ <m <m tm •»««■ M«»M WMW «»■»«■ • • ^ 

* Find out if the projection of the * 
C * Sat 1 vector into Sat 2*s       * 
C * perlfocal plane is within Sat 2*8 * 
c * orbit.                     ♦ 

I 

u 
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ANGLE - DATAN2(X1(2),X1(D) 
DIST » A2*(1DO-E2*E2)/(1DO*E2*DCOS(ANGLE)) 
IF (DIST .OT. PR) THEN 
INSIDE * .TRUE. 

ELSE 
INSIDE « .FALSE. 

ENDIF 
IF (DEBUG) MRITE(*,1040) RADDEG*ANGLE, DIST. INSIDE 

C    * * 
C * If the projection of Sat l's * 
C * vector into Sat 2's perifocal * 
C * plane is within Sat 2's orbit, * 
C * then use the first set of quadrant * 
C * checks. If outside of Sat 2's * 
C * orbit, then use the second set of * 
C   * quadrant checks. * 
C   * ——————— * 

Null « 0D0 
NU12 « 0D0 
NÜ21 « 0D0 
NÜ22 - 0D0 
IF (INSIDE) THEN 

IF (X1(2).LT.0D0) THEN 
IF (PDTH.GT.BQUND1) THEN 

IF (PDTH.GT.BOÜND2) THEN 
IF (N.EO.O) THEN 

Müll - 0D0 
NU12 ■ TMOPI 

ELSE IF (N.E0.2) THEN 
Müll ■ RANK(2) - TMOPI 
NÜ12 - RANK(l) 

ELSE IF CM.BO.4) THEN 
Null - RANK(4) - TMOPI 
NU12 - RANK(l) 
NÜ21 - RANK(2) 
NÜ22 - RANK(3) 

ELSE 
MRITE(*.1050) N 

ENDIF 
ELSE I 

IF (N.EQ.2) THEN I 
Null - -RANK(2) 
NU12 - RANKC) 

ELSE IF (M.B0.4) THEN 
NUU - - RANKC4) 
NU12 - RANK(l) * 

i 

i 
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NÜ21 - RANK(2) 
NU22 - RANK(3) 

ELSE 
WRITE(*.1060) N 

ENDIF 
ENDIF 

ELSE 
IF (PDTH.GT.B0UND2) THEN 

IF (N.EQ.2) THEN 
Null - RANK(2) 
NU12 - TWOPI - RANK(l) 

ELSE IF (N.EQ.4) THEN 
NU11 - RANK(2) 
NÜ12 - RANK(3) 
NÜ21 - RANK(4) 
NÜ22 - TWOPI - RANK(l) 

ELSE 
WRITE(*,1070) N 

ENDIF 
ELSE 

IF (N.EQ.2) THEN 
Null - TWOPI - RANK(2) 
NÜ12 « TWOPI - RANK(l) 

ELSE IF (N.EQ.4) THEN 
Null « RANK(2) 
NÜ12 - RANK(3) 
NÜ21 « TiOPI - RANK(4) 
NÜ22 • TWOPI - RANK(l) 

ELSE IF (N.NE.O) THEN 
WRITE(*.1080) N 

ENDIF 
ENDIF 

ENDIF 
ELSE 

IF (PDTH.GT.BOUND1) THEN 
IF (PDTH.GT.B0ÜND2) THEN 

IF (N.EQ.O) THEN 
NÜU ■ ODO 
NU12 - TWOPI 

ELSE IF (N.EQ.2) THEN 
Null « - RANK(l) 
NU12 » TWOPI - RANK(2) 

ELSE IF (N.EQ.4) THEN 
NU11 - - RANK(l) 
»U12 » TWOPI - RANKU) 
NU21 - TWOPI - RANK(3) 
NU22 ■ TWOPI - RANK(2) 
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ELSE 
WRITE(*.1090) N 

ENDIF 
ELSE 

IF (N.EQ.2) THEN 
Null - - RANKC1) 
NÜ12 - RANK(2) 

ELSE IF (N.E0.4) THEN 
Null - - RANK(l) 
NU12 - RANKC4) 
NÜ21 - TWOPI - RANK(3) 
NÜ22 - TWOPI - RANK(2) 

ELSE 
WRITE(*.1100) N 

ENDIF 
ENDIF 

ELSE 
IF (PDTH.GT.B0UND2) THEN 

IF CN.EQ.2) THEN 
NU11 « RANK(l) 
NÜ12 - TWOPI - RANK(2) 

ELSE IF (N.EQ.4) THEN 
NU11 - RANK(l) 
NÜ12 « TWOPI - RANK(4) 
NU21 ■ TWOPI - RANKC3) 
NÜ22 • TWOPI - RANK(2) 

ELSE 
WRITE<*.1110) N 

ENDIF 
ELSE 

IF (N.EQ.2) THEN 
NU11 ■ RANK(l) 
NU12 • RANK(2) 

ELSE IF (N.EQ.4) THEN 
Null ■ RANK(l) 
NU12 - RANKC4) 
NÜ21 - TWOPI - RANK<3) 
NÜ22 - TWOPI - RANK(2) 

ELSE IF (N.NE.O) THEN 
WRITE<*.1120) N 

ENDIF 
ENDIF 

ENDIF 
ENDIF 

ELSE 
IF CXK2KLT.0D0) THEN 

IF (PDTH.GT.BOUND!) THEN 
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IF (PDTH.GT.B0UND2) THEN 
IF CN.EQ.O) THEM 

Null « ODO 
NÜ12 - T»OPI 

ELSE IF (N.EQ.2) THEN 
Null - RANK(2) - TIOPI 
NU12 - RANK(l) 

ELSE IF CN.EQ.4) THEN 
Null - RANK(4) - TNOPI 
NÜ12 - RANK(l) 
NU21 - RANK(2) 
NÜ22 - RANK(3) 

ELSE 
WRITER. 1130) N 

ENDIF 
ELSE 

IF (N.EQ.2) THEN 
Null « - RANK(2) 
NU12 « RANK(l) 

ELSE IF (N.EQ.4) THEN 
Null • - RANK(4) 1 
NÜ12 « RANK(l) 
NÜ21 - RANK(2) 
NU22 - RANK(3) 

ELSE 
WRITE(*.1140) N 

ENDIF 
ENDIF 

ELSE 
IF (PDTH.GT.B0UND2) THEN 

IF (N.EQ.2) THEN 
NU11 - RANK(2) 
NÜ12 • TtfOPI - RANK(l) 

ELSE IF (N.EQ.4) THEN 
Null m RANK(2) 
NU12 - RANK(3) 
NU21 - RANK(4) 
NU22 - TiQPI - RANK(l) 

ELSE 
WRITE(*.il50) N 

ENDIF 
ELSE 

IF (N.EQ.2) THEN 
1011 - TNOPI - RANK(2) 
NÜ12 - TIOPI - RANK(l) 

ELSE IF (N.EQ.4) THEN 
Null « RANK(2) 
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NÜ12 - RANK(3) 
NU21 ■ TWOPI - RANK(4) 
NU22 « TWOPI - RAMK(I) 

ELSE IF (M.ME.O) THEN 
WRITE«. 1160) N 

ENDIF 
ENDIF 

ENDIF 
ELSE 

IF CPDTH.GT.B0UND1) THEN 
IF CPDTH.GT.B0UND2) THEN 

IF (N.EQ.O) THEN 
Null - ODO 
NU12 » TWOPI 

ELSE IF (N.E0.2) THEN 
Null « - RANKC1) 
NU12 - TWOFI - RANK(2) 

ELSE IF (N.E3.4) THEN 
Null - - RANK(l) 
NÜ12 « TWOPI - RANK(4) 
NÜ21 • TNOPI - RANK(3) 
NU22 « TWOPI - RANK(2) 

ELSE 
WRITE«*. 1170) N 

ENDIF 
ELSE 

IF (N.EQ.2) THEN 
NÜU « - RANK(l) 
NU12 - RANK(2) 

ELSE IF (NE0.4) THEN 
mil  « - RANK(l) 
NU12 - RANKC4) 
NÜ21 * TWOPI - RANK(3) 
NÜ22 - TWOPI - RANK(2) 

ELSE 
WRITE«. 1180) N 

ENDIF 
ENDIF 

ELSE 
IF (PDTH.GT.B0UND2) THEN 

IF (N.EQ.2) THEN 
NUU - RANK(l) 

j $ NÜ12 - TWOPI - RANK(2) 
ELSE IF CN.BD.4) THEN 

NUU - RANK(l) 
NU 12 « TWOPI - RANK(4) 
NUm - TWOPI - RANK(3) 

i 

i 

i 
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NU22 » TlfOPI - RANK (2) 
ELSE 

WRITE<*.1190) N 
ENDIF 

ELSE 
IF CN.EQ.2) THEN 

Null - RANK(l) 
IÜ12 « RANK(2) 

ELSE IF (N.EQ.4) THEN 
Null - RANK(l) 
NU12 - RANKC4) 
NÜ21 • TIOPI - RANK(3) 
NU22 - TiOPI - RANKC2) 

ELSE IF (N.NE.O) THEN 
WRITEC*.1200> N 

ENDIF 
ENDIF 

ENDIF 
ENDIF 

ENDIF 
RETURN 

900  FORMAT <//• DSQR -\D17.10.4X.'PR »\D17.10.4X. *E2*\ 
1 D17.10/* SA-reP-'.Dn.lO^X.'XCD-'.D^.lO^X// 
2 ' A ■\D17.10.4X.,B *\D17.10.4X. 'C «\D17.10/ 
3 ' K •,.D17.10//) 

1000 FORMAT <//' Nordor • Ml.//' P1-\D17.10.4X. IP2»\ 
1 017.10/' P>,.D17.10.4X.,P4»' .017.10/ 
2 • P5-\D17.10//) 

1010 FORMAT <//' PC.Il.,)«\D17.iO,4X.,ANSWERC\Il.')«\ 
1    •(,.F16.10.\\Fi6.10.f>,> 

1020    FORMAT (//' N-M1//C SolutlonC .11. ')•• .F16.10.' dtf'/» 
1030   FORMAT <//* UWUiV RankC.11. ')• .F16.10.' dtgV)) 
1040   FORMAT <//' Sit 1 Projection occurs at a Sat 2 NÜ of  \ 

1 F16.10.' dtg whtrt Sat 2 radius is \F16.10.» taiV/ 
2 ' INSIDE • \L1//) 

1050    FORMAT <//' ERRORI    »»'.It.1    XK2) < 0 
1 'PDTH > B0UND2 INSIDEV/) 

1060    FORMAT (//* ERROR»    »■Mi.1    XI(2) < 0 
1 'PDTH < BOUND2 INSIDEV/) 

1070    FORMAT <//* ERRORI    »»Ml/    XI (2) < 0 
1 'PDTH > B0UND2 INSIDEV/) 

1080    FORMAT <//* ERRORI    »•Ml.1    XI (2> < 0 
I 'PDTH < B0UND2 INSIDEV/) 

1090    FORMAT (//' ERROR!    N-'.Il/    XI ^2)  > 0 
1 'PDTH > B0UND2 INSIDEV/) 

1100    FORMAT <//' ERRORI    »•Ml.1    XIU.  > 0 
1     TDTK < BOUNDS    INSIDEV/) 

PDTH > BOUND1 * 

PDTH > BOUND1 • 

PDTH < BOÜND1 ' 

PDTH < BOUND! ' 

PDTH > BOUND! * 

PDTH > BOUND1 ' 

i in 
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I 
1110 FORMAT (//' ERRORI N*\I1.' XI (2) > 0 PDTH < BOUND1 \ 

1120 
1  TDTH > B0UND2 INSIDE'//) 
FORMAT (//* ERRORI N«\I1.' XI (2) > 0 PDTH < BOUND1 \ 

1130 
I  TDTH < B0UND2 INSIDE1//) 
FORMAT (//' ERRORI »»Ml,' XI (2) < 0 PDTH > BOUND1 \ 

1140 
I  TDTH > B0ÜND2 OUTSIDE V/> 
FORMAT (//* ERRORI N-\I1,' XI (2) < 0 PDTH > BOUND1 ', 

1150 
I TDTH < B0ÜND2 OUTSIDE1//) 
FORMAT Ur  ERROR! M«'.11. * XI (2) < 0 PDTH < BOUND1 •, 

1160 
I  TDTH > BOUND2 OUTSIDE1//) 
FORMAT (//* ERRORI N«\I1,' XI (2) < 0 PDTH < BOUND1 ', 

1170 
I TDTH < B0UND2 OUTSIDE1//) 
FORMAT (//' ERRORI N-Ml.' XI (2) > 0 PDTH > BOUND1 '. 

1180 
1  TDTH > B0UND2 OUTSIDE V/) 
FORMAT <//' ERRORI »»Ml.' XI (2) > 0 PDTH > BOUND1 '. 

1190 
1 TDTH < B0UND2 OUTSIDE'//) 
FORMAT <//' ERRORI ■••.11/ XI (2) > 0 PDTH < BOUND1 '. 

1200 
I  TDTH > B0UND2 OUTSIDE'//) 
FORMAT C//' ERRORI K»*.11.' XI (2) > 0 PDTH < BOUND1 \ 

C 
C 

i  TDTH < B0UND2 OUTSIDE'//) 
END 

C 
C 
C 

*        Function MO 

»* 
REAL*8 FUNCTION MCNU) 

LOGICAL*4 DEBUG 
REAL*8 m.  SHNU. CHNU. X. Y. Z 
REAL*8 BOUND1. 80UND2. DTH. DSQR. PDTH. PR. NU11. NU12. 

1 NU21. NU22 
REAL*8Mi. Al. El. INC1. MÜ1. ARCPA1. LONAN1. XI(4). 

1 SINC1. CINC1. SNU1. CNÜ1. SARGP1. CARGPl. 
2 SLNANl. CLNAN1. BETA! 
R£AL*8 M2. A2. E2. INC2. NU2. ARGPA2. 10NAN2. X2C4), 

1 SINC2. CINC2. SNU2. CNU2. SARGP2. CARGP2. 
2 SLNAN2. CLNAN2. BETA2 
REAL*8 Rll. R12. R13. R21. R22. R23. R31. R32. R33. 

1 SH. S12. S13. S21. S22. S23. S31. S32. S33 
REAL*8 HAIFPI.PI.TfOPI.DLGRAD.RADDEG 
REAL»8 ER. DU. TU 
OONNON /ADMIN/ DEBUG 
COMMON /ASTRC/ ER. DU. TU 
COMMON /SOUND/ BOUND 1. BOUND2. DTK. DSQR. PDTH. PR. NUil 

1 NU12. NU21. NÜ22 
COMMON /CONST/ HALFPI. PI. TfOPI. DECRAD RADDEG 



I 
I 
I 

I 
I 

I 

I 

I 

i 
I 
B 

COMMON /SAT1/  Ml, Al. El. INC1. NU1. ARGPA1. LONAN1. XI, 
1 SINC1. CINC1. SNU1, CNÜ1. SARGP1. CARGP1, 
2 SLNAN1. CLNAN1, BETA1 
COMMON /SAT2/  M2, A2. E2. INC2. NU2, ARGPA2. L0NAN2. X2, 

1 SINC2, CINC2. SNÜ2. CNÜ2. SARGP2, CARGP2. 
2 SLNAN2, CLNAN2. BETA2 
COMMON /TRANS/ Rll. R12. R13. R21, R22. R23. R31, R32. 

1 R33, Sll. S12. S13. S21. S22. S23. S31. S32. S33 
c   * * 

IF (NÜ.EQ.0D0) THEN 
M - 0D0 
RETURN 

ELSE IF (DABS(NU).EQ.PI) THEN 
M « DSIGN(PI.NU) 
RETURN 

ELSE IF (NU.EQ.TiOPI) THEN 
M - TWOPI 
RETURN 

ENDIF 
SHNU - DSIN(5D-1*NU) 
CHNU - DCOS(5D-l*NU) 
IF (CHNU.EQ.ODO) THEN 
M - DSIGN(PI.NU) 
IF (DEBUG) WRITE(*.1000) RADDEG*NU, RADDEG*M 
RETURN 

ENDIF 
M = 2D0*( DATAN( BETA2*SHNU/CHNU ) - E2*BETA2*SHNU*CHNU/ 

1  (CHNU*CHNU ♦ BETA2*BETA2 * SHNU*SHNU )) 
IF (M.LT.ODO) M « TWOPI ♦ M 
IF (NU.LT.ODO) M « M - TKOPI 
IF (DEBUG) ¥RITE(*,1000) RADDEG*NU, RADDEG*M 
RETURN 

1000 FORMAT C NU-1 ,F16.10.' deg\4X.' M«\F16.10.' deg') 
END 

C   *  
C   * 
C   *        Function PDCAO 
C   * 
C  ♦  

REAL*8 FUNCTION PDCA(NU) 
C  * * 

LOGICAL*4 DEBUG 
INTEGER*4 I 
REAL*8 M. SHNU1. CHNUl. DMPDNU 
REAL*8 MM. DX. DY, X. Y. Z 
REAL*8 B0UND1. B0UND2. DTH. DSQR. PDTH. PR. Null, NU12. 

1 NU21. NU22 

113 



I 
I 
I 
e 
i 

i 
i 

i 

i 
C 
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c 
c 
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c 
c 
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REAL*8 Ml, Al. El. INC1, NU1. ARGPA1. L0NAN1, XI(4), 
1 SINC1, CINC1. SNU1. CNU1. SARGP1. CARGP1. 
2 SLNAN1, CLNAN1. BETA1 
REAL*8 M2, A2. E2. INC2. NU2, ARGPA2. L0NAN2, X2C4). 

1 SINC2. CINC2, SNU2. CNÜ2. SARGP2. CARGP2, 
2 SLNAN2. CLNAN2. BETA2 
REAL*8 Rll. R12. R13. R21. R22, R23. R31. R32. R33. 

1 Sll. S12. S13. S21. S22. S23. S31, S32, S33 
REAL*8 HALFPI.PI.TWOPI,DEGRAD,RADDEG 
REAL*8 ER. DU. TU 
COMMON /ADMIN/ DEBUG 
COMMON /ASTRO/ ER. DU, TU 
COMMON /BOUND/ BOUND1. B0UND2, DTH, DSQR, PDTH, PR. Null. 

1 NU12 NU21 NU22 
COMMON/CONST/ HALFPI. PI, TWOPI, DEGRAD, RADDEG 
COMMON /SAT1/  Ml, Al, El. INC1, NU1. ARGPA1, LONAN1. XI, 

1 SINC1. CINC1, SNU1, CNU1, SARGP1, CARGP1. 
2 SLNAN1, CLNAN1. BETA1 
COMMON /SAT2/  M2. A2. E2. INC2. NU2, ARGPA2, L0NAN2. X2. 

1 SINC2, CINC2, SNU2. CNU2, SARGP2. CARGP2. 
2 SLNAN2. CLNAN2. BETA2 
COMMON /TRANS/ Rll. R12. R13. R21. R22. R23. R31. R32. 

1 R33, Sll. S12. S13. S21, S22, S23. S31. S32. S33 
* * 

NU1 - NU 
SNU1 • DSIN(NUl) 
CNU1 - DCOS(NUl) 
* —-—-———  

* Compute the Radius of Sat 1 
*«——— — 

XI(4) - Al * (1D0 - E1*E1) / (1DO ♦ E1*CNU1) 
* ........  

* Compute the position of Sat 1 In 
* Perlfocal Coordinate Frame 

XI CD - X1(4)*CNU1 
XI (2) • X1C4)*SNU! 
XI(3) - 0D0 
IF (DEBUG)  WRITE(*.1000) RADDEG*NU1. 
$.....—...——...—.—............ 
* 

* 
*- 

X 
Y 
Z 

Compute the position of Sat 1 In 
the Geocentric Eauatorlal Frame. 

(XKD.I-1.4) 

RU*X1(1> 
R21«X1(1) 
R31*X1(1) 

RI2«X1<2) 
R22*X1(2) 
R32*X1<2> 

IF  (DEBUG)  WRITECvlOtO)  X.Y.Z.DSQRT(X»X*Y«Y*Z»Z) 
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c 
c 
c 
c 
c 

c 
c 
c 
c 
c 
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c 
c 
c 
c 
c 
c 
c 
c 

c 
c 
c 
c 

* —-.-  

* Transform Sat l*s position from 
* the Geocentric Equatorial Frame 
* to Sat 2's perifocal frame 
*  

XI CD « S11*X ♦ S12*Y ♦ S13*Z 
XI(2) » S21*X ♦ S22*Y ♦ S23*Z 
XI(3) « S31*X ♦ S32*Y ♦ S33*Z 
PR - DSQRT(X1(1)*X1(1)*X1(2)*X1(2)) 
IF (DEBUG) WRITE(*,1020) (XI(I),1-1,3). 

1 DSQRT(X1(1)*X1(1)*X1(2)*X1(2)*X1(3)*X1(3)). PR 

Compute the distance between XI 
projected onto Sat 2's perifocal 
plane and Sat 2's perigee (BOUND1) 
and apogee (B0UND2) 

* 
* 

*  

DX - XI(1) - A2*(1D0-E2) 
DY - XI (2) 
BOUND1 - DSQRT(DX*DX ♦ DY*DY> 
DX - XI (!) ♦ A2*(1D0*E2) 
B0UND2 « DSQRT(DX*DX ♦ DY*DY> 
* ....-.-.—..-....-—... 

* Find out if there are any points 
* on Sat 2's orbit that are exactly 

DTH away from the endpoint of 
vector XI. If there are. then 
there are either two or four 
ooints. 

* 

* 

*« 

DSQR • DTH*DTH - X1(3)*X1(3) 
PDTH • 0D0 
IF (DSQR .GT. 0D0) THEN 
PDTH « DSQRT(DSQR) 
IF (DEBUG) IRITE(*.i030> PDTH. BOUND1. BOUND2 
CALL QRBBNDO 
IF (DEBUG) CALL PRINTRO 

ELSE 
IF (DEBUG) IRITE(*.1030) PDTH. BOUND1. B0UND2 
PDCA • 0D0 
RETURN 

ENDIF 
•••——— -—««——••—-—-—•* 

* Compute Probability Density of    * 
* Close Approach * 
»——-—-—............... * 

PDCA - (M(NU12)-N(NUli) ♦ M(NU22)-M(NU2D) /(TWOPI*THOPI) 
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IF (DEBUG) NRITE(*.1040) PDCA 
SHNÜ1 - DSIN(5D-1*NU1) 

CHNÜ1 « DC0S(5D-1*NU1) 
DMPDNÜ - CHNU1*CHNU1 ♦ BETA1*BETA1*SHNU1*SHNU1 
DMPDNÜ « (1D0-E1)*BETA1/(DMPDNU*DMPDNU) 
PDCA - PDCA*DMPDNU 
IF (DEBUG) WRITE(*,1050) PDCA, DMPDNU 
RETURN 

1000 FORMAT (//' Input NU-'.F16.10// 
1 Sat 1 Position in Sat 1''s perifocal frame: •// 
2 X Axis: '.F17.10,* km'/ 
3 Y Axis: '.F17.10.' km'/ 
4 Z Axis: \F17.10,' kinV 
5 Sat 1 Radius: \F17.10.' km'//) 

1        1010 FORMAT (' Sat 1 Position in the inertial reference frame:' 
1 //'     X Axis: '.F17.10.' km'/ 

12    * Y Axis:   '.F17.10.'  km'/ 
3    ' Z Axis:   '.F17.10.'  kmV 
4    ' Sat 1 Radius:   '.F17.10.'  km'//) 

B1020   FORMAT (' Sat 1 Position in Sat 2"s oerlfocal frame:'// 
1     ' X Axis:   '.F17.10.'  km'/ 
2 ' Y Axis:   '.F17.10.'  km'/ 

13    ' Z Axis:   \F17.10.'  km'/ 
4 ' Sat 1 Radius: '.F17.10.' km'/ 
5 ' Projection: '.F17.10.* km'/ 
»6    ' Radius'//) 

1030    FORMAT (//' PDTH-'.F17.10/' BOUND!-\F17.10. 
1    4X.'BOUND2»\F17.10/) 

1040    FORMAT (' Unsealed PDCA-'.Fl7.10/) 
11050    FORMAT (' PDCA-'.F16.10.4X.'DMPDNU»\F16.10//) 

END 
C * ♦ 

Be       * ♦ 
C ♦ Subroutine PRINTRO * 
C * ♦ 

IC         ♦ * 
SUBROUTINE PRINTRO 

C         ♦ ♦ 
!LOCICAL*4 DEBUG 

INTEGERS I.  J. K 
REAL*8 DX. DY.  DZ. DR1.  DR2.  DR3.  DR4 

»5 REAL*8 BOUND1. B0UND2. DTH. DSQR.  PDTH. PR. NUll. NU12. 
!  & 1    NU21.  NU22 

REAL»6 Ml. Al.  El.  INC1.  NU1. ARGPA1.  LONANl. XI(4) 
SREAL*8 M2. A2. E2.  INC2. NU2. ARGPA2.  L0NAN2. X2(4) 

REAL«8 SINC1. CINC1. SNU1. CNU1. SARGP1. CARGP1. 
1    SLNAN1. CLNAN1. BETAl 
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REAL*8 SINC2. CINC2, SNU2. CNU2, SARGP2, CARGP2, 
1    SLNAN2,  CLNAN2,  BETA2 

REAL*8 HALFPI,PI,TKOPI,DEJRAD,RADDEG 
REAL*8 ER, DU,  TU 
COMMON /ADMIN/    DEBUG 
COMMON /ASTRO/    ER,  DU, TU 
COMMON /BOUND/    BOUND1, B0UND2. DTH.  DSQR, PDTH.  PR,  Null. 

1    NU12   NU21    NU22 
COMMON*/CONST/    HALFPI.  PI.  TWOPI.  DEGRAD, RADDEG 
COMMON /SAT1/      Ml. Al,  El.  INC1. NU1. ARGPA1.  LONAN1.  XI. 

1 SINC1. CINC1. SNU1. CNU1. SARGP1. CARGP1, 
2 SLNAN1. CLNAN1.  BETA1 

COMMON /SAT2/      M2. A2, E2.  INC2. NU2. ARGPA2.  L0NAN2.  X2, 
1 SINC2.  CINC2,  SNU2. CNU2,  SARGP2. CARGP2, 
2 SLNAN2. CLNAN2.  BETA2 

* » * 

X2(4) - A2*C1DO-E2*E2)/(1DO*E2*DCOS(NU11)> 
X2(l) « X2<4)*DCOS(NUll) 
X2(2) - X2C4>*DSIN(NUU> 
X2C3) - 0D0 
DX - X2C1)  - XI(1) 
DY - X2C2)  - XI(2) 
DZ « X2C3)  - XI(3) 
DR1 - DSQRTCDX*DX ♦ DY*DY ♦ DZ*DZ) 
X2(4> - A2*(1D0-E2*E2)/<1D0*E2*DCQS(NU12>> 
X2C1) • X2(4)*DCOS(NU12) 
X2C2) - X2(4)*DSIN(NU12) 
X2(3) - 0D0 
DX • X2(l)  - X1C1) 
DY - X2(2)  - XI(2) 
DZ • X2(3) - XI(3) 
DR2 - DSQRTCDXOX ♦ DY*DY ♦ DZOZ) 
¥RITEC*.1000> RADDEG*NUU. DR1. RADDEG*NU12. DR2 
X2C4) • A2*UD0-E2*E2)/UD0*E2*DCQS<NU21>> 
X2(l) « X2<4)*DCQS<NU21> 
X2C2) • X2(4)*DSIN(NU21) 
X2C3) - ODO 
DX » X2(i)  - XI(1) 
DY - X2C2) - XI(2) 
DZ - X2(3) - XI(3) 
DR3 - DSQRT(DX*DX ♦ DY*DY ♦ DZ*DZ) j 
X2(4) » A2*UD0-E2*E2>/OD0*E2*DCQS(NU22>) 
X2(l) - X2(4)*DCOS(NU22) j 
X2C2) » X2(4)*DSINCNU22) 
X2(3) « ODO 
DX - X2(l)  - XI (1) 
DY - X2C2)  - XI(2) 

i 
1 

! 
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DZ « X2(3) - XI(3) 
DR4 « DSQRT<DX*DX ♦ DY*DY ♦ DZ*DZ) 
WRITE(*,1100) RADDEG*NU21, DR3. RADDEG*NU22, DR4 
RETURN 

1000 FORMAT (//' Müll»',F16.10.' deg',4X, 
1 'Range to Null - \F16.10,* kmV 
2 ' NU12«',F16.10,' deg',4X, 
3 »Range to NU12 « '.F16.10.' km') 

1100 FORMAT (' NU21«' .F16.10.» deg',4X. 
1 'Range to NÜ21 « '.F16.10.' km'/ 
2 ' NU22«'.F16.10.,' deg'4X, 
3 'Range to NÜ22 « '.F16.10.' km'//) 
END 

c   * * 
C   *       Function CCÜBRT * 
C   * * 
C    *— * 

COMPLEX*16 FUNCTION CCUBRT(X) 
COMPLEX*16 X 

C   * * 
REAL*8 A. ANGLE. B. MAG 
REAL*8 HALFPI.PI.TWOPI.DEGRAD,RADDEG 
COMMON /CONST/ HALFPI. PI. TWOPI. DEGRAD. RADDEG 

c   ♦ * 

A » DREAL(X) 
B • DIMAG(X) 
IF ( B ,EQ. 0D0) THEN 
MAG - DABSCA) 
MAG • DSIGNC MAG**(1D0/3D0). A) 
CCUBRT - DCMPLXC MAG. 0D0) 
ELSE 
MAG » CDABSCX) 
ANGLE • DATAN2C B. A) 
IF <A .LT. 0D0) THEN 
ANGLE« (DSICN(T¥OPI. ANGLE) *ANGLD/3D0 
ELSE 
ANGLE ■ ANGLE/3D0 
END IF 
MAG • MAG**(1D0/3D0) 
CCUBRT « DCMPLX(MAG*DCOS(ANGLE).MAG*DSIN(ANGLE)) 
ENDIF 
RETURN 
END 

C  * * 
c   • 
C   *      Subroutine QUADRADIC      * 
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c   * * 

SUBROUTINE QUADRADICCP.X) 
REAL*8 P(2) 
COMPLEX*16 XC2) 

C    * * 
REAL*8 A 
COMPLEX*16 B 

C  *  * 
A - -P(l) 
B - CDSQRT(DCMPLX(A*A - 4D0*P(2>>> 
X(l) - (A - B)/2D0 
X(2) - (A ♦ B)/2D0 
RETURN 
END 

C   *  * 
c   * * 
C   *       Subroutine CUBIC        * 
C   * * 

SUBROUTINE CUBIC<P.X) 
REAL*8 P(3) 
COMPLEX*16 X(3) 

C   *-- * 
REAL*8 A. B. C 
COMPLEX*16 CCUBRT. CX. D. E, SQRT3XJ 

C  * * 
SGRT3XJ « (ODO. 1.73205080756887729D0) 
A • <3D0*P(2)-P<1)*P(1))/3D0 
B » <2D0*PU)*PU>*PU) - 9D0*P(1)*P(2) ♦ 27D0*P(3))/27D0 
C - B*B/4D0 ♦ A*A*A/27D0 
IF (C.LT.ODO) THEN 
CX « <OD0.1DO)*DSQRT(DABS<C)) 
ELSE 
CX « <1D0.0D0)*DSQRT(C) 
END IF 
D • CCUBRTC-B/2D0 ♦ CX) 
E • CCUBRT(-B/2D0 - CX) 
XU) • D ♦ E - PU)/3D0 
X(2) - -(D ♦ D/2D0 ♦  CD - D/200*SORT3XJ - PCD/3D0 
XC3)  • -CO ♦ E)/2D0 -  (0 - E)/2D0*S0RT3XJ - PCD/3D0 
RETURN 
END 

C • ♦ 
c        ♦ ♦ 
C ♦ Subroutine OUARTIC • 
C ♦ * 
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SUBROUTINE QUARTICCP.X) 
REAL*8 PC4) 
COMPLEX*16 X(4) 

C * —* 
INTEGER I,  IS 
REAL*8 C(3).  Y 
COMPLEX*16 D, E,  R. SC3) 

C *——— * 
C(l) - -P(2> 
C(2) - PU)*P<3>-4D0*P(4) 
C(3) - -P(1)*P(1)*P(4)  ♦ 4D0*P(2)*P(4>  - P(3)*P(3) 
CALL CUBIC(C.S) 
IS • 0 
DO 100 1-1.3 

IF (DIMAGCS(D).EQ.ODO) THEN 
IF (IS.EH.0D0) THEN 

IS - I 
Y » DREAL(SCD) 

ELSE 
IF (DREAL(S(D).GT.Y) THEN 

IS - I 
Y - DREAL(SCD) 

ENDIF 
ENDIF 

ENDIF 
100     CONTINUE 

IF (IS.EQ.O) THEN 
Y - ODO 
*RITEC*.1000> 
DO 200 1-1.3 

200       VRITE(*.1010) DREAL(S(D). DINAG(SCI)) 
ENDIF 
R • CDSQRT(DCMPU€P(1)*P(1>/4D0 - PC2)  ♦ Y>) 
IF <R.EQ.(0D0.0D0>> THEN 

D - 2D0»CDSQRT<DCHPLX(Y«Y - 400*P(4») 
E - -D 
D - CDSQRT(.75D0*P(1)*P(1)  - 2D0*P(2>  ♦ D) 8 
E - CDSQRT<.75D0*PU>»P(1>  - 2D0»P<2)  ♦ E) 

ELSE 
D • (4D0«P<i>*P<2>-8D0*P(3>-PU>«P<i>*P(l>)/4D0/R ll 
E » -D 
D - CDSQRT(.75D0»P(1)*P<1) - R«R - 2D0*P(2> ♦ D) 
E - CDSQRT(.75D0*P<1)*PC1)  - R*R - 2D0«P(2)  ♦ E) 

ENDIF 
X(l) • -PCD74D0 ♦ R/2D0 ♦ D/2D0 
XC2) - -PCD/4D0 ♦ R/2D0 - D/2D0 
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X(3) • -PCD/4D0 - R/2D0 ♦ E/2D0 
IX(4> - -PCD/4D0 - R/2D0 - E/2D0 

RETURN 
1000    FORMAT (* Cubic Error!    All 3 roots were complex!1/) 
1010    FORMAT C Root:1.II.'   (\F17.10. \ \F17.10. ■> *> 

I END 

i 

i 

i 
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